You are here
RAPID PROTOTYPING OF MICROFLUIDIC PACKAGES
- Date Issued:
- 2006
- Abstract/Description:
- In the area of MEMS there exists a tremendous need for communication between the micro-device and the macro world. A standard protocol or at least multiple standards would be of great use. Electrical connections have been standardized for many uses and configurations by the integrated circuit industry. Standardization in the IC industry has created a marketplace for digital devices unprecedented. In addition to the number of "off the shelf" products available, there exists the possibility for consumers to mix and match many devices from many different manufacturers. This research proposes some similar solutions as those for integrated circuits for fluid connections and mechanical configurations that could be used on many different devices. In conjunction with offering the capability to facilitate communication between the micro and macro worlds, the packaging solutions should be easy to fabricate. Many devices are by nature non-standard, unique, designs that make a general solution difficult. At the same time, the micro-devices themselves will inevitably need to evolve some standardization. In BioMEMS devices the packaging issue is concerned with delivering a sample to the device, conducting the sample to the sensor or sensors, and removing the sample. Conducting the sample to the sensor or sensors is usually done with microchannels created by standard MEMS fabrication techniques. Many current designs then utilize conventional machining techniques to create the inlet and outlet for the sample. This work proposes a rapid prototyping method for creating the microchannel and inlet / outlet in simplified steps. The packages developed from this process proved to be an effective solution for many applications.
Title: | RAPID PROTOTYPING OF MICROFLUIDIC PACKAGES. |
19 views
9 downloads |
---|---|---|
Name(s): |
Pepper, Michael, Author Cho, Hyoung , Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2006 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | In the area of MEMS there exists a tremendous need for communication between the micro-device and the macro world. A standard protocol or at least multiple standards would be of great use. Electrical connections have been standardized for many uses and configurations by the integrated circuit industry. Standardization in the IC industry has created a marketplace for digital devices unprecedented. In addition to the number of "off the shelf" products available, there exists the possibility for consumers to mix and match many devices from many different manufacturers. This research proposes some similar solutions as those for integrated circuits for fluid connections and mechanical configurations that could be used on many different devices. In conjunction with offering the capability to facilitate communication between the micro and macro worlds, the packaging solutions should be easy to fabricate. Many devices are by nature non-standard, unique, designs that make a general solution difficult. At the same time, the micro-devices themselves will inevitably need to evolve some standardization. In BioMEMS devices the packaging issue is concerned with delivering a sample to the device, conducting the sample to the sensor or sensors, and removing the sample. Conducting the sample to the sensor or sensors is usually done with microchannels created by standard MEMS fabrication techniques. Many current designs then utilize conventional machining techniques to create the inlet and outlet for the sample. This work proposes a rapid prototyping method for creating the microchannel and inlet / outlet in simplified steps. The packages developed from this process proved to be an effective solution for many applications. | |
Identifier: | CFE0001341 (IID), ucf:46979 (fedora) | |
Note(s): |
2006-08-01 M.S. Engineering and Computer Science, Department of Mechanical, Materials, and Aerospace Engineering Masters This record was generated from author submitted information. |
|
Subject(s): |
rapid prototyping micro fabrication mems microfluidics |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0001341 | |
Restrictions on Access: | public | |
Host Institution: | UCF |