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ABSTRACT 

Engineers and infrastructure owners have to manage an aging civil infrastructure in the 

US. Engineers have the opportunity to analyze structures using finite element models (FEM), 

and often base their engineering decisions on the outcome of the results. Ultimately, the success 

of these decisions is directly related to the accuracy of the finite element model in representing 

the real-life structure. Improper assumptions in the model such as member properties or 

connections, can lead to inaccurate results. A major source of modeling error in many finite 

element models of existing structures is due to improper representation of the boundary 

conditions. 

In this study, it is aimed to integrate experimental and analytical concepts by means of 

parameter estimation, whereby the boundary condition parameters of a structure in question are 

determined. FEM updating is a commonly used method to determine the “as-is” condition of an 

existing structure. Experimental testing of the structure using static and/or dynamic 

measurements can be utilized to update the unknown parameters. Optimization programs are 

used to update the unknown parameters by minimizing the error between the analytical and 

experimental measurements. Through parameter estimation, unknown parameters of the structure 

such as stiffness, mass or support conditions can be estimated, or more appropriately, “updated”, 

so that the updated model provides for a better representation of the actual conditions of the 

system.  

In this study, a densely instrumented laboratory test beam was used to carry-out both 

analytical and experimental analysis of multiple boundary condition setups. The test beam was 

instrumented with an array of displacement transducers, tiltmeters and accelerometers. Linear 
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vertical springs represented the unknown boundary stiffness parameters in the numerical model 

of the beam. Nine different load cases were performed and static measurements were used to 

update the spring stiffness, while dynamic measurements and additional load cases were used to 

verify these updated parameters. 

Two different optimization programs were used to update the unknown parameters and 

then the results were compared. One optimization tool was developed by the author, Spreadsheet 

Parameter Estimation (SPE), which utilized the Solver function found in the widely available 

Microsoft Excel software. The other one, comprehensive MATLAB-based PARameter 

Identification System (PARIS) software, was developed at Tufts University. Optimization results 

from the two programs are presented and discussed for different boundary condition setups in 

this thesis. For this purpose, finite element models were updated using the static data and then 

these models were checked against dynamic measurements for model validation. Model 

parameter updating provides excellent insight into the behavior of different boundary conditions 

and their effect on the overall structural behavior of the system. Updated FEM using estimated 

parameters from both optimization software programs generally shows promising results when 

compared to the experimental data sets. Although the use of SPE is simple and generally 

straight-forward, we will see the apparent limitations when dealing with complex, non-linear 

support conditions. Due to the inherent error associated with experimental measurements and 

FEM modeling assumptions, PARIS serves as a better suited tool to perform parameter 

estimation. Results from SPE can be used for quick analysis of structures, and can serve as initial 

inputs for the more in depth PARIS models. A number of different sensor types and spatial 

resolution were also investigated for the possible minimum instrumentation to have an 

acceptable model representation in terms of model and experimental data correlation.  
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CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW 

Background 

Engineers often use finite element analysis (FEA) to validate their hand calculations or in 

more complex structures, confirm their intuitions regarding the overall structural behavior of the 

system. If the situation arises where an existing structure such as a bridge or building is being 

refurbished, modified or retrofitted, engineers can consult the finite element model (FEM), add 

new information regarding the system, run new analyses and observe possible changes to the 

structure. The reliability of these analyses is directly related to how well the structure is modeled 

in the software. Experimentally acquired data can be used to calibrate or update finite element 

models to better represent the actual behavior of an existing structure. It is possible to manually 

calibrate numerical models using data as well as using fully automated, optimization-based 

algorithms. These approaches are expected to capture actual behavior by updating critical 

parameters. Boundary condition modeling is a very critical issue for civil structure modeling and 

this study focuses on model parameter estimation using sensor data with special emphasis on 

boundary conditions. 

Uncertainty due to boundary condition modeling is one of the major contributors to most 

of the misrepresentations of a structural model (Catbas et al, 2007). Engineers generally use 

fixed or pinned connections for boundary conditions at the supports of structures, thereby 

simplifying the overall model analysis. Reducing or increasing the stiffness of the supports has a 

great deal of influence of the resulting stiffness of the structure, especially when modeled 

incorrectly in finite element software. There may be a compromise in safety or integrity of the 
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structure, if the finite element model (FEM) is unreliable, due to improper modeling of the 

boundary conditions. Through parameter estimation and model parameter updating, engineers 

can avoid these pitfalls and have greater confidence in the FEM of the structure in question.  

 

Literature Review 

Although the concept of parameter estimation using model updating is not new, the 

availability and power of today’s computers has allowed much improved algorithms and 

computational efficiency for this area of research. Customized optimization programs or 

algorithms have been developed for specific structural problems or as commercial software. The 

focus of this research will deal with the use of a MATLAB-based parameter estimation program, 

PARIS, along with an Excel-based spreadsheet program, SPE developed as part this thesis work.  

Early experiments with parameter estimation focused on using simulated static 

measurements to solve for unknown stiffness parameters. Sanayei and Saletnik (1996a) used 

simulated strain measurement data to estimate the unknown element areas and moments of 

inertia for a two-dimensional truss and frame example. In the companion paper to that study, 

simulated measurement data with modeling error was then used on the same example to 

determine the impact of using noisy measurements for parameter estimation (Sanayei and 

Saletnik 1996b). Liu and Chian (1997) proposed and tested a method for identifying element 

properties of a truss using static strain data. It was found that using strain gages provided an 

economical alternative to measuring nodal displacement with expensive displacement 

transducers. 
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A heuristic method for determining optimum measurement DOF and load placement was 

recommended by Sanayei and Saletnik (1996b) before using experimental static displacement 

and strain measurements to update stiffness parameters of a small 2D frame model (Sanayei et al. 

1997).  

Developments in FEM elements such as the Soil Substructure Superelement (Ksss) were 

used to model the complicated interface below the ground level of an example bridge structure 

by accounting for the coupling between DOF typically neglected in practical analysis (Sanayei et 

al. 1999). Also, a proposed partial-restrained frame (PRF) element was used to model the semi-

ridged behavior of structural connections and parameter estimation was performed to update 

unknown vertical and rotational spring properties for the Ksss and PRF elements, respectively. 

Similar studies from Aktan et al. (2001) showed that unknown vertical stiffness parameters of 

neoprene pads used on a grid structure could be successfully estimated with the aid of material 

test data for the optimization process. 

Parameter estimation is not limited to static or dynamic responses only. Data from both 

tests can be combined and used as composite data for structural identification. Data sets 

involving static displacements and eigenmodes were utilized by Oh and Jung (1998), for a two-

span continuous beam structure. Aktan et al. (1998) proved that unknown parameters of complex 

3D models could be successfully updated and calibrated using an automated optimization 

process. More recent experimental studies involving complicated grid structures have shown that 

combinations of all measurement data types (strains, rotations, displacements, mode shapes, etc.) 

can be combined or stacked in normalized error functions which were minimized to obtain 

updated parameters, including unknown neoprene pad vertical stiffness (Sanayei et al. 2006). 

3 



The significance of modeling error in parameter estimation is evaluated in detail in 

Sanayei et al. (2001). Parameter estimation results were presented showing the affect of various 

types of error (modeling, FEM, and parameter estimation) and its impact on the objective 

function and overall reliability of the studies. In Ventura et al. (2003), commercially available 

automated parameter estimation software, FEMtools, could be used to successfully update 

unknown structural parameters of a large (48-story) civil structure. The original and updated 

FEM natural periods and MAC values were compared indicating good correlation between the 

models.  

Parameter Estimation Theory 

Parameter estimation is the procedure through which the parameters of a structure, 

whether stiffness, cross sectional area, elastic modulus or moment of inertia, are updated using 

measured Nondestructive Test (NDT) data. In real-world scenarios, structural member properties 

may be different from their expected or published values due to variances that arise during 

fabrication, construction or destructive events such as damage or fatigue problems that occur 

over the service life of the structure. Using optimization methods, one can minimize the error 

between the analytical and measured responses, thus updating the unknown parameters using 

experimental data sets. The updated model can then serve as a starting point, or baseline model 

for future analysis. Figure 1 and 2 details the parameter estimation process and how it compares 

with traditional structural analysis (Sanayei et al. 2004). 
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Figure 1: Direct Structural Analysis Process (Sanayei et al. 2004) 

 

Figure 2: Parameter Estimation Process (Sanayei et al. 2004) 
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For direct structural analysis, the member properties are usually known, loads are 

applied, and the responses such as displacements or rotations are measured. The reverse is true 

for parameter estimation in that the section properties (stiffness, mass, etc.) are not that well 

known. Experimental loads are applied to the structure and the responses (NDT) at a few DOF 

are measured. Using the NDT data, parameter estimation is performed and the initial unknown 

parameters are updated. 

When we speak of parameter estimation we are searching for the “truth,” i.e. the 

unknown parameter values which accurately reflect the measured responses of the structure. The 

problem is that we may not be able to properly identify the unknown parameters because of 

inherent errors associated with the identification process. The errors that we speak of include 

unknown measurement errors from the sensors and loads, and modeling errors from the FEM. 

Other errors arise from improper fabrication of materials. We cannot readily “identify” the actual 

conditions of the structure, but we can estimate them with great certainty (Sanayei, 2007). 

In this study, one of the objectives is to develop and use a simplified approach that can be 

implemented by practicing engineers for parameter estimation using static measurements. The 

author mainly focuses on identifying the parameters that define the boundary conditions. The test 

structure and the boundary conditions can be considered analogous to single span, simply 

supported bridges such as concrete T-beam bridges (Catbas et al. 2005). As a result, the author 

was not concerned with updating the element stiffness properties since the error due to incorrect 

boundary condition modeling will likely govern the success of the finite element model. Linear 

vertical springs will be used to model the joint stiffness at the boundaries, for a total of two 

unknown stiffness parameters. To estimate the spring stiffness parameters, static displacement 

and rotational data were measured on the test beam. Microsoft Excel’s built-in SOLVER 

6 



function, utilizing the General Reduced Gradient (GRG2) algorithm, is used to minimize the 

error between the analytical and experimental data. Results from PARIS based parameter 

estimation software will also be compared to the Excel data. A brief overview of the 

optimization programs as well as the error functions are summarized in the following sections. 

One contributor of error in this study is directly related to experimental error. The loads 

were stacked on top of small plates in order to recreate point loading as opposed to a distributed 

load condition. Since the 38 lb weights were manually stacked at the load points, there is 

difficulty in maintaining an equal distribution of the weight across the top flange of the beam. 

Small errors in location may cause the beam to be loaded more towards the front or back of the 

top flange, causing the beam to rotate or tilt. Also, small errors due to the sensors and equipment 

are inherent with any experimental study. Calibration of the sensors is required to ensure that 

measurement error is fully minimized. 

Static Analysis – Error Functions 

The classical matrix formulation for FEM force-displacement relationship is 

                                                    { } { }UKF ][=       (1) 

where {  is force vector, {  is vector of displacements and/or rotations and [  designates 

the structure stiffness matrix. 

}F }U ]K

Since data over the entire set of degrees of freedom were not measured, the formulation 

in equation (1) can be partitioned according to measured and unmeasured DOF. Partitioning the 

force displacement relationship of equation (1) gives 
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where the subscripts a and b denote “measured DOF” and “unmeasured DOF”, 

respectively. 

By using static condensation, the analytically determined forces,{ }aF  can be solved in 

terms of the experimentally measured displacements and rotations, { }m
aU  where 

{ } [ ] [ ][ ] [ ]( ){ } [ ][ ] { }bbbabababbabaaa FKKUKKKKF 11 −− +−=    (3) 

For this research all of the unmeasured DOF are partitioned to{ }bF , and part of equation 

(3) will be equal to a zero vector and cancel the multiplied sub matrices [ ]abK , [ . In 

reality,{  may contain forces which are not at measured DOF. For those cases, {  will have 

to be included, by multiplying sub-matrices given in equation (3). The error function is simply 

the difference between the analytically determined forces, 

] 1−
bbK

}bF }bF

{ }aF  and the experimental (applied) 

forces{ , where denotes the error as a function of the unknown boundary condition 

stiffness parameters and is given as 

}m

aF { )(ke }

 { } [ ] [ ][ ] [ ]( ){ } [ ][ ] { } { }m
a

m
bbbab

m
ababbabaa FFKKUKKKKke −+−= −− 11)(   (4) 

Similarly, by taking the inverse of the stiffness matrix [ ]K  in equation 1, the flexibility 

matrix and force vector can be used to solve for the displacements and rotations, . Using the 

same procedure as outlined in equations (2) through (4), the analytically measured displacements 

or rotations are solved as 

[ ]U
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 { } [ ] [ ][ ] [ ]( ) { } [ ][ ] { }( )m
bbbab

m
ababbabaaa FKKFKKKKU 111 −−− −−=    (5) 

The new error function based on the difference between analytically determined and 

experimentally measured displacements or rotations is 

 { } [ ] [ ][ ] [ ]( ) { } [ ][ ] { }( ) { }m
a

m
bbbab

m
ababbabaa UFKKFKKKKke −−−= −−− 111)(   (6) 

Since some of the multiplication in equations (4) and (6) involves taking the inverse of 

some of the sub-matrices, the error functions will be nonlinear functions of the stiffness 

parameters of the boundary conditions.  
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CHAPTER TWO: OPTIMIZATION 

Once test data is collected and the error functions are defined, an optimization algorithm 

is required in order to minimize the error between the analytically determined data and the 

experimental data. An optimization algorithm uses iterative approaches to determine the best or 

optimal solutions for a given set of equations. For this thesis, two different optimization 

approaches and software will be utilized and the results of the updated parameters compared.  

Spreadsheet Parameter Estimation (SPE) 

One of the objectives of this study was to explore development and use of a parameter 

estimation software that could be utilized by engineers or personnel that are not considered 

experts in this particular field. The goal was to have a process in place whereby the intended user 

would require little instruction or training to carry out the parameter estimation analysis. A 

widely used software common to most, if not all engineering offices, is spreadsheet-based 

software, particularly Microsoft Excel. This spreadsheet is also customized for a specific 

problem; that being the test beam structure. No provisions were made to setup a spreadsheet for 

generic parameter estimation of different structure types. 

SPE – Parameter Estimation Procedure 

The procedure for parameter estimation using SPE is setup to directly manipulate and 

analyze equation (1). A specific error function, namely the displacement output error function of 

equation (6) is used to form the error function vector and ultimately the objective function. This 
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error function is more robust than that of equation (4) because we are directly comparing 

displacement and rotations, which we have more inputs for, rather than comparing measured 

forces, which there were only a few of. By using more known measurements, the difference in 

the error function vectors is greatly reduced before parameter estimation takes place. Parameter 

estimation in Excel is rather straight forward when setting up a basic template. All of the 

necessary matrix manipulation commands are built-in to the program including: “MMULT( )” 

for multiplication of matrices and “MINVERSE( )” for taken the inverse of a matrix. 

At this time, the user does not directly enter data such as joint location, connectivity, or 

element type in the spreadsheet to create the FEM. This spreadsheet-based optimization program 

works in conjunction with one of the new features of SAP2000 version 10, in order to expedite 

the parameter estimation process. When a SAP200 analysis is performed, the user has the option 

of extracting the structural stiffness and mass matrices to a separate file, which can be copied 

into the spreadsheet. The stiffness matrix is modified such that only the global degrees of 

freedom (DOF) were remaining. Any axial degrees of freedom were neglected and the analysis is 

limited to 2-D bending only, so the 21x21 DOF stiffness matrix reduces to a 14x14 DOF global 

stiffness matrix. Since the global stiffness matrix is a function of spring stiffness at the 

boundaries, locations where those parameters affect the matrix were identified and entered into 

the necessary cells. These references to the unknown spring stiffness values were the parameters 

that update the stiffness matrix when the optimization is performed. The user may wish to enter 

any experimental measurement and load vectors at this point so that later analyses can be made 

quicker by copying and pasting the vectors into the appropriate areas of the spreadsheet. 
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Once the global stiffness matrix is entered in the spreadsheet, it is observed that DOFs 1 

(K11), and 13 (K1313), were affected by the spring stiffness values in the cells shown in equation 

(7). 
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This procedure is validated by checking the stiffness matrix for the same structure with “free” 

end restraints. A new FEM with spring supports of arbitrary value is then run and the resulting 

stiffness matrix reflects the increase in K11 and K1313 due to the axial stiffness term of the spring 

element (Figure 3). 
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Figure 3: SPE Global Stiffness Matrix Showing Spring Referenced Cell 

 

Since not all of the DOF contain sensors to measure data, a transform matrix, [T] is used 

to partition the global stiffness matrix and the experimental force and displacement/rotation 

vectors according to measured and unmeasured DOF. The user simply designates the new DOF 

order (from known to unknown DOF) and enters “1” in the appropriate cells. Further matrix 

manipulation is needed to partition the global stiffness matrix (note: this process becomes easier 

once the spreadsheet has been setup the first time). The global stiffness matrix is colored 

according to the partition labels on the spreadsheet (Figure 4). 

 

 

Figure 4: SPE Global Stiffness Matrix Partition Labels 
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The next calculations use static condensation techniques to solve for the analytically 

determined forces or displacement and rotations (equations 4 and 6 respectively) in terms of the 

measured forces or displacements and rotations. With the analytically determined displacement 

and rotation vector created, an error function vector is generated (Figure 5).  

 

 

Figure 5: SPE Error Function Vector 

SPE – Optimization Setup 

For nonlinear problem optimization, Solver uses the Generalized Reduced Gradient 

(GRG2) algorithm, developed by Leon Lasdon and Allen Waren, of the University of Texas at 

Austin and Cleveland State University, respectively (Flystra et al. 1998). The Solver works by 

iteratively solving for the target value, by changing values for the cells that are independent and 

adjustable. For this research, the target cell represents the objective function and the adjustable 

cells represent the unknown spring stiffness parameters, K1 and K2 (Figure 6). 
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(a) 

 

(b) 

Figure 6: (a) SPE Adjustable Cells (b) SPE Target Cell 

 

Since Excel can only designate one cell as the “Target Cell” or objective function, the 

Euclidean norm of the displacement and rotation error functions is calculated (square root of the 

sum of the squares) to define the objective function J(k) as 

                                             ∑=
i

ikEkJ 2)()(      (8) 

where i represents a displacement or rotation measurement at a specific DOF. The method of 

least squares is used because it can be shown that equation (8) minimizes the error for noise 

(measurement, modeling error, etc.) that is assumed to be normally distributed. The square root 

that is typically found in this equation is omitted because it has no bearing on the affect of the 

outcome of the minimization process. Equation 8 is much akin to minimizing the length of a 

vector, given it starts at zero and ends at vector coordinates (u, v, w, x, y, z). The length of the 

vector L would be solved by taking the square root of the sum of the squares, i.e. 

)zyxwv(u 222222 +++++=L  
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The Solver menu can be reached by going to the Tools menu and selecting “Solver…” 

from the list. Once the Solver window is opened, the buttons for the Target value as well as 

adjustable values are visible (Figure 7). 

 

 

Objective 
function 

Unknown  
stiffness 
parameters 

Figure 7: Solver Parameter Window 

 

In order to set the convergence criteria as well as the algorithm settings, the “Options” button is 

selected. Setting the convergence criteria is the most important option in this window since it is 

what drives the algorithm to locate the global minimum (Figure 8). 
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Figure 8: Solver Options Window 

 

For this study, the convergence is set to approximately 1E-12 to ensure that the global minimum 

is located. Automatic scaling is also selected in case the initial guesses have different magnitudes 

than those of the updated parameters, and Solver is unable to converge to them. Generally 

speaking, the choice of search method, either Newton or Conjugate, does not appear to have any 

significant impact on the outcome of the update parameters. 

 In many problems the best or optimum cell along with any constraints, are functions of 

the adjustable or “changing” cells. By taking the partial derivative of the function to be 

optimized, with respect to the unknown parameters a vector called the gradient is formed. The 

gradient vector measures the rate of change of the objective function, according to each unknown 

parameter. When Solver begins a numerical analysis, it incrementally changes the adjustable 

cells (unknown parameters) based on the gradient of the function. For target cells that are 

minimized, if the partial derivative with respect to one adjustable cell is close to zero while 

another is a large positive value, Solver will more than likely decrease the changing cell value on 

the next iteration. Optimality conditions are satisfied when the gradient vector is equal to zero, 
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since it would indicate that the global minimum is found (i.e. no error in the system). For this 

condition, the initial parameters would have no effect on the objective function since the global 

minimum would have already been identified. For our research, since error is present in the 

system the optimum solution will be located when the gradient vector is at its lowest value or 

approximately equal to zero (if possible).  

Although Solver may find an optimum solution to the problem, there is no guarantee that 

it is the global solution to the problem. This case arises when the gradient vector is equal to zero, 

but the values for which the partial derivates are equal to zero are numerous (many). For those 

problems in which the function has many local optimum points (maxima or minima), Solver may 

have difficulties locating the lowest “true” point or “global” solution to the problem. Often, the 

algorithm will be caught in a local “minima” which is near the starting point based on the initial 

values, and ultimately converge to that point. In order to avoid the pitfalls of being trapped in a 

local optimum, users should have a solid understanding of the problem or try multiple starting 

values with the best initial values. 

PARameter Identification System Software (PARIS) 

PARIS is parameter estimation software developed by Dr. Masoud Sanayei and his 

graduate students at Tufts University in Medford, MA. PARIS is written in the MATLAB 

programming language and uses static and/or dynamic measurements to update stiffness and 

mass parameters of linear-elastic systems. It has been used for research studies in the fields of 

structural parameter estimation, model updating, and health monitoring. This program can be 
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configured for both 2D and 3D structural parameter estimation. The following flowchart shows 

the procedure for carrying out parameter estimation using PARIS: 

  START

Input Data  (DATA.m)
PI, PT

Is test data 
available?

Simulate
Data

Read External
Data 

Assign 
PF=PI

Is Solflag=0?

Use a MATLAB
Optimization Toolbox

Routine, using E(p)

Is Gaflag=0?

Start Parameter
Estimation

Use GA
find BestP
using J(P)

Is Gaflag =2?

Map BestP 
to PF

Assign P=PF

Find E(p), J(p)

Use Optimization
Find DeltaP

PF=P+DeltaP

Converged?

END

Print Parameter History

Find S(p)

YESNO

YESNO

NO

NO

YES

YES

YES

NO

 

Figure 9: PARIS Optimization Procedure (Courtesy of Tufts University) 
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Finite Element Model Creation 

Upon initialization of the PARIS program, the user defines the structure by entering data 

into specific matrices. Material data, specifically for steel or concrete, can be entered into a 

material matrix and is referenced by the element connectivity matrix. Joint data is first entered 

according to x, y, and z coordinates (required for 3D problems). After joint data is entered, the 

element connectivity matrix is formed by specifying what elements will be used to model the 

structure and to which joints they were attached. The following elements can be use to model 

different structures in PARIS: 

1. 2D & 3D Truss Elements 

2. 2D & 3D Frame Elements 

3. 2D & 3D Ksss (Soil-Substructure Superelement) 

4. 2D & 3D Partially Restrained Frame element (PRF) 

For this research, 2D frame elements were used to model the steel I-beam and Ksss 

elements represent the boundary supports. The Ksss element was developed for parameter 

estimation in order to capture the mass and stiffness properties for the complicated interface 

below the ground level of a structure (Sanayei, 1999). The Ksss element is represented by a single 

node with three DOF, whereby making it a 3 x 3 stiffness matrix (Figure 10).  
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Figure 10: Ksss Test Beam Model 

 

For our case, all horizontal DOF were eliminated since we were assuming all loads were in the 

vertical direction, and also assuming that there is no rotational capacity of the Ksss element since 

only vertical deflection of the pads was observed during testing. Here it is used to model the 

vertical flexibility of the supports of the test beam and is shown as a vertical spring on all further 

drawings or models in this thesis for clarity.  

Preliminary models of the test beam involved using 2D PRF elements along with Ksss 

elements, to account for the assumed rotational stiffness of the boundary conditions (Figure 11).  

 

 

Figure 11: PRF Element 
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PRF elements are used to model semi-ridged joints, or joints which are neither fully fixed nor 

fully pinned. One rotational DOF is added to the end of a typical 2D frame element and this DOF 

is connected by a torsional spring to the rotational DOF at the joint (Sanayei et al. 1999). A 6 x 6 

stiffness matrix defines this element, and for Kθ = 0, the joint becomes pinned (moment release) 

and for K = ∞ (rigid), the element becomes a normal frame element. 

Next, the structure support information is entered into a boundary condition matrix. Ones 

or zeros were entered depending upon which joint DOF were to be constrained or not 

constrained (negative 1 for non-existent DOF). The section properties matrix is the last matrix 

which is used to define the physical structure by assigning section properties such as mass and 

stiffness to each element. The first matrix is defined by initial sectional properties of the structure 

or data which can be determined from blue prints or field measurements. The initial property 

matrix is used with the experimental (NDT) data that is input into the program. The second 

matrix is used exclusively with simulated measurement data, in which case the actual member 

properties are known. 

Parameter Estimation Data 

With the FEM information completed, the user next selects the settings they want to use 

for parameter estimation. There were a total of 16 different error functions the user may select 

for parameter estimation. Static displacement error functions, like those of equations (4) and (6) 

were used primarily for this research study, but static strain, modal displacement, and modal 

frequency data-based error functions may also be used, provided they have the appropriate 

measurement data. The user can opt to use multiple error functions if both static and dynamic 
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measurement data is available. While not used in the study, readers are encouraged to find more 

information regarding multi-response error function or error function “stacking” from Sanayei et 

al. (2006).  

Applied forces or moments were entered into a load case matrix detailing the joint 

location(s), load direction (x, y, z), and load intensity. Single or multiple load force cases may be 

specified. Due to the programming language of MATLAB, users can setup all of their load case 

matrices ahead of time and then comment them out of the program (“%”), so that only the case 

they want to be read is used. 

The last part of the parameter estimation data section is to specify which DOF were used 

by the measurement data file. A measured node matrix is used to define which DOF is measured 

or not measured according to the experiment. Ones (measured) or zeros (not measured) identify 

which displacement or rotational DOF collected measurements. Again, the user can enter 

different DOF combinations depending upon the number of measurements they wish to use and 

comment out the ones that won’t be read for analysis. Similar matrices were used for measured 

modal information from dynamic analysis. 

Other sections in the code were specific to normalization methods, parameter grouping 

options, weighting methods, simulated measurement error, modeling errors, and parameter 

estimation limits and controls. These sections were used limitedly or not at all for this research 

study and will not be described in detail. The last sections cover convergence control in which 

the user specifies the limit for both the error and objective functions. This criterion deals with the 

relative change in the unknown parameters and at convergence the values should be close to or at 

one. The user specifies a 1 for one of the input flags if actual test data is to be used. The 

measurement data is placed in a text (.txt) file and referenced by another command. Multiple 
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files may be kept in this section and turned on or off (by commenting out) for different parameter 

estimation runs.  

Another powerful tool of PARIS is its ability to plot the objective function, J(k) in 3D 

space for viewing, showing two variables at a time (Figure 12). 

 

 

Figure 12: Sample PARIS Objective Function Plot 

 

Objective function plots can provide insight into the behavior of the non-linear function 

as different initial conditions were tried, sometimes shifting or even changing the objective 

function, J(k) itself. Objective function plots also let users see a 3D plot of the complex function, 

indicating regions which may be feasible for initial starting points for the unknown parameters. 

An objective function surface plot, shown in Figure 12, shows the global minimum for two 

unknown spring stiffness values. If there is a global minimum or solution to the function, then it 

will show up on these plots as a well-defined sharp point representing the best solution to the 

problem. 
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 Another graphic that can be produced is the iteration plot path, showing the plot of the 

initial values as they converge toward the global minimum of the objective function. This path is 

usually not well-defined for analyses that converge quickly to the global minimum (represented 

by a few straight lines). For those functions which are highly prone to many local minima in 

addition to the global minimum, algorithms that are powerful will show the path of the iterations 

as it travels around and over the minima, ultimately reaching the global solution. Figure 13 

shows the iteration plot path for the objective function shown in Figure 12. 

 

 

Figure 13: Sample PARIS Iteration Path Plot 

 

While there are 6 different solution techniques or algorithms to choose from, the method 

of least squares is used primarily for all the analysis in this study. The error functions in 

equations (4) and (6) are algebraically non-linear functions of the stiffness parameters. Using a 

Gauss-Newton method (Sanayei et al. 1999), the error function vector is linearized using a first 

order Taylor series expansion and the change in unknown parameters can be found for each 

iteration i. 
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{ } { } { }ppp ii ∆+=+1       (9) 

The objective function, J(k) is minimized once the convergence limit for the relative change in 

the unknown parameters is reached. For all PARIS analysis, the limits for the relative change in 

the objective function, J(k), and error function, {e(k)} is 1E-12 and 1E-06, respectively. 

Once convergence criteria were met, the updated parameters were then input back into 

the FEM, and the responses were evaluated by the user. PARIS is a powerful analysis tool 

because of its ability to be customized by the user. 

 

26 



CHAPTER THREE: NUMERICAL STUDIES AND MODEL DESIGN

Design Considerations 

Designing and manufacturing a test specimen incorporates many different considerations.  

Four main criteria governed the choice of a beam for this research study. First of all, any beam 

selected must be capable of hosting the sensors in terms of surface space for mounting.  

Secondly, the strain gages, tiltmeters and displacement transducers need to be able to operate in 

their specified ranges.  In other words, the gages can only read data above their minimum values 

specified in the spec sheets.  Thirdly, the modal frequencies needed to be such that at least the 

first few modes must be easily excited.  Last, the loading values have to be predetermined and 

checked for satisfactory outputs in terms of the values being recorded by sensors.  As one can 

see, this is a simply but iterative process which is summarized below. 

• Sensor mounting space 

• Measurable data 

• Modal frequencies 

• Loading values 

Considering all the above, it was decided that a W8X13, 12 ft in length would best satisfy 

all of the above criteria. The approximate 4-inch wide flange of the beam would allow us to 

place two sensors side by side if required, and the 8-inch depth allows for placement of the 

tiltmeters we had in our inventory. Since a 12 ft clear span was designed, the beam was actually 

ordered as 13 ft. 
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Once the beam type and loads were known, the next step was to design the supports.  

Two main criteria needed to be satisfied for the supports.  Most importantly, no deflections or 

deformations should be induced.  From a practical perspective, the author decided that a height 

of 3 ft. beneath the beam would be sufficient for working space. It becomes quite cumbersome to 

install gages and run wiring on a structure supported close to the ground. Based on 

recommendations from steel manufacturers, heavy WT sections were used as supporting surfaces 

with pipes used as the legs.  The final product (Figure 14) resembles what is commonly known 

as a “saw horse.” 

 

  

Figure 14: Test Beam Sawhorse Support 

 

Dynamic tests of the supports were also carried out, so that the 1st natural frequency of the 

sawhorse was verified as being greater than 3 times the 1st natural frequency of the beam. Three 
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PCB seismic accelerometers were used to capture the time-history data and DAQ Express 

software was used to plot the frequency response function (modal frequencies) (Figure 15). 

 

   

ω1 = 180.7 Hz 

  (a)                (b) 

Figure 15: (a) Dynamic Test on Sawhorse (b) Frequency Response Function of Sawhorse 

The first mode was checked to ensure that the sawhorse support was much stiffer than the beam 

so that there would be no coupling of the 1st modes between them. By assuring that the 1st natural 

frequency of the support (180.7 Hz) is much greater than the 1st natural frequency of the beam 

(~40 Hz) then no modal coupling will take place.  

Analytical Model 

The test beam analytical model was created using SAP2000, a commercially available 

finite element analysis software, by Computers and Structures, Inc. Discretization of the beam 

was based primarily on the location of pre-existing sensors. Based on the pre-existing sensor 
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layout (those which could not be removed without damaging them completely), the beam was 

discretized into six equal elements, each 24 inches in length (Figure 16).  
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as well as exhibiting linear-elastic behavior. Due to the complexities of modeling the non-linear 

behavior of the neoprene pads, this study will focus solely on the linear-elastic region of the 

materials. Figure 17 shows the FEM joint, element, and DOF labels and locations. The boundary 

conditions were described by a set of linear vertical springs, allowing for settlement of the joints. 

Truly fixed or pinned support conditions would have restrained vertical deflection. 

 

 

Figure 17: Test Beam FEM information 

Sensor/Data Validation 

Validation of the experimental data sets must be carried out before using them with the 

optimization programs. The author must verify that the experimental data was credible and that 

no significant errors existed. This was also a chance for us to verify that the sensors were 

working properly by making sure there were no unwanted measurement errors such as spikes and 

drift. Data validation also provides a starting point for the parameter estimation studies, by 

letting us know how close the experimental and preliminary analytical model were to one 

another. The author assumed that a non-calibrated FEM of the test beam with truly pinned 

supports was going to be stiffer than the physical model, and compared the experimental data for 

LC1 (1x1x1/8 angle steel supports) to observe the percent difference between them.  
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A sample load case, two 0.416 kip symmetric point loads, was selected to verify the 

displacement and rotational measurements for a “pin-pin” boundary condition setup. Three 

different data sets were used in the comparison: closed-from solution, SAP2000 FEM, and 

experimental data. The closed-form solution or “exact” solution is derived from structural 

analysis calculations using the moment-area theorem and was used to show how much error was 

due to low order FEM approximation. Displacement data is shown in Table 1 and rotational data 

is shown in Table 2. 

 

Table 1: Displacement Measurement Data Validation 

Beam 
Location 

(in.)

Disp. 
Sensor #

Closed 
Form     
(in.)

Pin-Pin 
SAP2000 

(in.)
|% Diff.| Exp. ∆ 

(in.) |% Diff.|

0 ∆0 0 0 - - -
24 ∆1 -0.0192 -0.0192 0.1% -0.027 41.5%
48 ∆2 -0.0334 -0.0334 0.1% -0.042 24.7%
72 ∆3 -0.0384 -0.0384 0.1% -0.046 18.6%
96 ∆4 -0.0334 -0.0334 0.1% -0.041 23.5%
120 ∆5 -0.0192 -0.0192 0.1% -0.026 37.3%
144 ∆6 0 0 - - -

Load Case #                         
(with description)

LC1

 

 

Table 2: Rotation Measurement Data Validation 

Beam 
Location 

(in.)

Rot. 
Sensor #

Closed 
Form     
(rad.)

Pin-Pin 
SAP2000 

(rad.)
|% Diff.| Exp. θ    

(rad) |% Diff.|

0 θ1 -0.00083 -0.00083 0.1% -0.00086 2.6%
24 θ2 -0.00073 -0.00073 0.1% -0.00065 10.9%
48 θ3 -0.00042 -0.00042 0% -0.00040 4.0%
72 θ4 0 0 0% 0 0%
96 θ5 0.00042 0.00042 0% 0.00043 3.2%
120 θ6 0.00073 0.00073 0.1% 0.00067 7.9%
144 θ7 0.00083 0.00083 0.1% 0.00087 4.4%

Load Case #                         
(with description)

LC1
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From both tables, the difference in the closed-form solution versus the SAP2000 model is 

relatively small. This indicated that our FEM was discritized enough as to provide good 

approximate solutions for both the displacement and rotation measurements. By looking at the 

displacement results we can see that there is generally a 20-40% difference between the closed 

form solution and the experimental values. This should raise a red flag since a pinned connection 

(experimental) should have little or zero deflection at the supports (clearly they were deflecting 

from Table 1). It was not the goal of this author to verify that actual pin supports were used for 

part of the experiment. The small steel angles were intended to be used for the experiments and it 

will later be discussed how assuming them as pin supports is generally incorrect. For the 

rotational measurements, there is fairly good correlation between the data sets. The preliminary 

results show that the FEM is a stiffer model than the experimental results indicates. Based on the 

results of the data verification the author will need to reduce approximately 30% error between 

the experimental and non-calibrated FEM.   

SPE – Numerical Validation 

Before using experimental data with the optimization programs for updating the unknown 

stiffness parameters, the programs must first be validated using error free data (noise free). With 

zero error present in the system, one should expect to obtain the exact values for the unknown 

parameters. To test the reliability of the SPE program with no input (measurement) error, two 

similar finite element models were generated (Figure 18). The first FEM will represent the 

“experimental” or “actual” test beam setup including applied force(s) at select DOFs, and will 

consist of linear translational springs for boundary conditions. The values selected for the spring 
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stiffness will represent the “actual” stiffness values to match or update the second model. 

Equation 1 is rearranged to solve for the “measured” displacements and rotations (10). 

[ ] [ ] [ ]knownFKU 1
exp

−=              (10) 

After performing an analysis with the first model and obtaining the “known” measurements, 

[ ]expU , we use this vector as our input (NDT) data. The second FEM or “initial” model will be 

identical to the “actual” FEM with the exception of the spring stiffness values. Different spring 

stiffness values were input into the model and a new analysis is run. The goal here is to see if the 

“initial” stiffness matrix will update to the produce “known” displacement, based on the matrix 

using the “actual” displacement and rotation matrix, but using unknown stiffness quantities. The 

analysis results indicate that SPE identifies the “unknown” parameters correctly in this validation 

study. 
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Figure 18: Verification of Optimization Using a Numerical Example 

PARIS – Numerical Validation 

Like SPE, it is also important to perform validation studies with PARIS using noise or 

error free measurement data. By using the simple relationship found in equation (10) we can 

solve for displacement and rotations by assuming we already know the “actual” spring stiffness 

values and our measured force vector. Using this data, we multiply the inverse of the stiffness 

matrix with the measured force vector. The resulting displacement/rotation vector is based on the 
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“known” spring stiffness values. Again the data from this vector is copied to its own text file and 

used as the input into PARIS. Under the initial section property matrix, initial spring values 

different from those that were used to obtain the “known” displacement vector, were entered into 

the correct spots (Figure 19). 

 

 

Figure 19: PARIS Initial and True Section Property Matrices 

 

PARIS is then run, and the updated parameters should be exactly equal to the “known” 

parameter values we used to get the “actual” displacement vector from. 

With little or no measurement error we can expect the objective function plot to look 

something like Figure 20, where the global minimum is represented be a well-defined sharp 

point in the function. 
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Global  
minimum 

Figure 20: PARIS Global Minimum (4 MDOF) 

 

This plot illustrates the global minimum of the objective function for two variables, using the 

minimum number of measurements required. An interesting concept of measurement selection 

for parameter estimation is that adding more known measurements (or “sensors”) to the analysis 

does not necessarily mean that the objective function plot will become clearer or sharper. As 

shown in Figure 21, an analysis using more observations (12MDOF) may create a “foggier” 

objective function surface because all of the measurements are averaged. These additional 

measurements do not make the plot clearer because of added interference. This interference may 

be due numerical procedures and in a real life case due to measurement errors associated with 

additional sensors. When all of the new additional measurements were averaged, the plot 

becomes smoother but the global minimum is not as clear as it was before, using the minimum 

number of observations. Due to the fact that this is for validation purposes and there is no 

37 



measurement error, the global minimum value will still be the same as the minimum sensor case. 

However, for actual test data including measurement error, it will be harder to locate the global 

minimum because of the variability of the averaged measurements. 

 

 

Global 
 minimum 

Figure 21: PARIS Global Minimum (12MDOF) 

 

When performing the analysis using PARIS, a few key points must be kept in mind in 

order to determine if the parameter estimation process was successful. Engineering judgment 

must be used when making initial value assumptions. By looking at the experimental data, 

inferences regarding the behavior of the system can be made, leading to better guesses for the 

parameter estimation process. Convergence plots should be checked to make sure that the 

iteration steps are not diverging or traveling in the wrong direction. Graphic plot of the objective 

function can be checked to see if the plot shows a convex curve, representing a clear global 

minimum instead of a flat plot, which would indicate problems with the measurement locations 
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locating the global minimum. The norms of the unknown parameter values and the sensitivity 

matrix can give clues as to how observable the unknown parameters were with regards to the 

selected measurements and load sets. Norms which were large and close together in value, 

indicated measurement locations that were highly observable and good for the parameter 

estimation analysis. 

Model Validation Using Dynamic Test Data 

A unique aspect of this research study is that the updated finite element models were 

validated using independent dynamic tests. At this time, the author will not be updating the mass 

parameters for the dynamic comparison. This may be accomplished by using experimental mode 

shapes and/or frequencies to update the mass matrix. By looking at the dynamic properties of the 

updated finite element models, we can use the mode shapes and frequencies as another tool, in 

addition to using the updated static measurements. Time history data was collected using several 

PCB seismic accelerometers located at all of the static load points (A1, A2…A5), and at both of 

the supports. An impact hammer was used to excite the structure and the behavior was captured 

using the accelerometers (Figure 22). 
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Figure 22: Impact Hammer Tests on the Beam 

 

The natural frequencies and mode shapes were used for comparison. First, MIMO (Multi-input 

multi-output) FRFs (Frequency Response Functions) were obtained by using impact tests. Then 

those FRFs were fed to CMIF (Complex Mode Indicator Function) algorithm to identify the 

modal parameters, i.e. the natural frequencies and mass normalized mode shapes. Finally, results 

coming from dynamic tests, static tests and updated FEM were compared. Further details about 

the methodology and algorithm can be found in Catbas et al. (2004).  

The accuracy of the updated parameters was verified not only by comparing the natural 

frequencies, but by also comparing the mode shapes. Modal Assurance Criteria (MAC) values 

were used to compare the mode shapes between the updated and experimental FEMs. The first 

mode is generally the dominating or critical mode and missing it will indicate errors. MAC 

values from 0.95 to 1.0 indicate a very good (reliable) match between the updated and 

experimental models. 

.
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CHAPTER FOUR: EXPERIMENTAL STUDIES – UCF TEST BEAM 

Sensor Instrumentation 

For our experimental tests, it is critical that sensors be placed where maximum responses 

can be measured adequately. Previous strain studies conducted on the test beam included the use 

of arc-weldable strain gages, and numerous spot-weldable strain gages. The load points for the 

experiment were based on the 24 in. discretization length of the frame elements in the SAP2000 

model. Some of the preexisting sensors were located at the desired load points so a decision was 

made to keep them rather than removing them from the beam. Removing the spot-weldable 

strain gages would have proved too costly since, removing the contact shim from beneath the 

gages would have rendered the sensors useless for future studies. Provisions were made to 

overcome this situation by using shim plates to elevate the load path above the installed sensors. 

Displacement Transducers 

  Precision measurements were needed for us to be able to record small incremental 

changes in deflection, and the superior construction of the string potentiometers from Spaceage 

Control Inc., allowed us to do so (Figure 23).  In general, these devices measure displacement via 

a flexible cable that extracts from and retracts to a spring-loaded drum.  They convert mechanical 

motion into electrical signals that can be measured.  An internal spring helps maintain tension on 

the cable and the threaded drum rotates a precision rotary sensor that produces an electrical 

output proportional to the cable travel.  These displacement transducers were easy to configure, 
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setup, and make measurements from.  Advantages of using these sensors were; ease of 

installation, cost effectiveness, reliability, and minimal signal conditioning requirements. The 

locations of these sensors allow us to capture the displacement profile of the beam for a 

multitude of load cases.  

 

 

Figure 23: Displacement Transducer Setup 

 

Due to the fact that attaching the cable of the transducer to the lower flange of the beam 

creates a tension force in the cable, the sensors must be heavy enough to resist that force.  Failure 

to resist the tension force would result in the cable snapping back into the gage, possibly 

damaging the internal parts, and rendering the sensor useless.   

Cato Steel donated some steel HSS 6x4x1/4 tubing to use as housing for the sensor.  The 

steel tubing was cut into equal sections that were wide enough to allow a sensor, additional wire 

and a terminal strip to rest safely inside.  A hole drilled through the top of the housing permitted 

the cable to pass through while the gage remained screwed into the base, along with the terminal 
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strip.  The terminal strips allow for quick connection between the sensor and the datalogger that 

will be used to record measurements.   

Two options were presented to us when deciding how to attach the cables to the beam for 

displacement tests.  One method was to create a lanyard and wrap additional cable around the 

upper and lower flanges of the beam, tighten it to prohibit slippage and then clip the transducer 

cable to the lanyard cable.  The other method uses high-strength magnets, designed for holding 

PCB seismic accelerometers onto steel structures.  This method proved to be faster since all we 

needed to do was to thread the transducer cable through an opening in the base of the magnet, 

attach a clip to prevent the cable from traveling back through the hole and attach it to the flange 

of the beam (Figure 24).   

 

 

Figure 24: Displacement Cable Attachment Method 

Vibrating Wire Tiltmeters 

These tiltmeters are comprised of a pendulous mass, which is under the force of gravity.  

As tilt increases or decreases, the mass attempts to rotate beneath the elastic hinge point and the 

tension in the vibrating wire changes, altering the natural frequency.  An electromagnetic coil 
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plucks the vibrating wire in order to read the natural frequency. Some advantages of using 

vibrating wire tiltmeters are that they combine high range with high sensitivity, and have 

excellent long-term stability.  Since the sensor outputs readings in units of frequency, there is 

little attenuation over long cable lengths. 

Geokon vibrating wire gage (VBWG) tiltmeters were placed approximately 6 inches 

from the supports on either side of the beam, where maximum rotation values will be measured 

(Figure 25). Also, for our loading scenario, the resolution of the gages is high enough to record 

the small incremental changes that we may see due to loading of the test beam. 

 

 

Figure 25: Geokon VBWG Tiltmeter 

CR10X Datalogger 

The CR10X is a rather inexpensive and robust data collection unit, found extensively in 

environmental and civil monitoring applications (Figure 26). The CR10X datalogger is a rugged 

unit capable of running in some of the most demanding environments, and in temperatures 
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ranging from -25˚C to +50˚C.  Our unit has 2 Mbytes of internal storage capacity, allowing for 

up to 524,288 data values per MByte, where high-resolution data (5 decimal characters) equals 4 

bytes and low-resolution data (4 decimal characters) equals 2 bytes.  The CR10X is capable of 

sampling rates from real-time to 64Hz and up to 750Hz using burst measurements over short 

intervals.  Analog inputs allow for 6 differential or 12 single ended measurements, as well as 

accommodations for resistance measurements (resistive bridge-based), as well as excitation 

outputs of -2.5V to +2.5V. 

 

 

Figure 26: Campbell Scientific CR10X Datalogger 

AM16/32 Multiplexer 

The main purpose for the multiplexer is to increase the number of sensors that can be 

measured by the CR10X (Figure 27).  It is also used when there are more sensor inputs than the 

datalogger channels will allow.  Because of its relatively inexpensive cost, up to 4 multiplexers 

can be used with one CR10X datalogger, allowing hundreds of sensors to be run at a time.  Two 

separate modes, “2x32” and “4x16” allows for scanning of 32 sensor input channels, each having 

2 lines and for scanning of 16 sensor input channels, each having 4 lines respectively.  The 
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maximum number of sensors that can be multiplexed is limited to: 32 single-ended or differential 

analog sensors not requiring excitation (thermocouple) or 16 single-ended or differential sensors 

requiring excitation (full bridge strain gages).  In a differential measurement, the voltage on the 

H input is measured with respect to the voltage on the L input.  A single-ended measurement is 

used to measure voltage at a single-ended input with respect to ground.  Although often used in 

conjunction with the CR10X, the multiplexer is only good for indoor, non-condensing 

environments.  Separate enclosure units can be purchased to protect the system if it is used 

outdoors.  Like the CR10X, the AM16/32 can be used in temperatures ranging from -25˚C to 

+50˚C. 

 

 

Figure 27: Campbell Scientific AM16/32 Multiplexer 

AVW1 Interface 

The AVWI provides important signal conditioning that helps to convert the swept 

frequency excitation from +2.5V to +12V (Figure 28).  Most of the Geokon VBWG’s require a 

12V source since a 2.5V source may not be strong enough to pluck the tensioned wire over it 

frequency range.  Due to its nature, the AVW1 also provides transformer isolation and noise 

reduction for the vibrating wire signal. 
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Figure 28: Campbell Scientific AVW1 Interface 

Load Case Selection 

For the test beam experiments, a total of 13 load cases (LC) were conceived to test 

different load location and intensities. Four of these load cases deal with varying load intensity 

which will later prove to have a significant impact on the load case selection process. 

 

 

Figure 29: Test Beam Experimental Load Locations 
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The various load locations shown in Figure 29, are labeled from left to right as A1, A2, 

A3, A4, and A5. These five locations allow for the loads to be placed at various points along the 

beam and in several different combinations. The following is a brief explanation of each loading 

scenario: 

1. LC1_Full – This load case represents two symmetrically placed point loads at load 

locations A2 and A4 on the test beam (Figure 30). This load case was chosen because 

it elicits good responses from the sensors due to the intensity of the loads. By 

selecting a symmetric load case, the researcher was also able to observe the behavior 

of the actual load distribution as captured by the instrumentation. 

 

 

Figure 30: LC1_Full Elevation View 

 

2. LC2_A1…A5 – This load case is actually five separate (individual) point loads 

starting at load location A1 and progressing to load location A5. The author wanted to 

capture the structural behavior of the test beam due to a moving point load across the 

structure. Each load is applied one at a time and measurement data is collected for 
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each load location. For parameter estimation, the data from combining these load 

cases should provide reliable, accurate results. Figure 31 shows the load as it moves 

to each new load point, represented as a faded-colored stack of weights. 

 

 

Figure 31: Load Case(s) LC2_A1…A5 

 

3. LC3_A1…A3 – For the final load case, a series of moving point loads, representing 

axle loads from a truck was implemented. The load configurations and intensities 

were based on the 4:4:1 axle loads for the American Association of State Highway 

and Transportation officials (AASHTO) design truck (Figure 32). 
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Figure 32: AASHTO Standard Truck Load (AASHTO 2004) 

 

This load case is a slight variation on the previous moving point loads, in that it 

simulates multiple point loads moving at once (as a group) as well as having 

significant increased weight (Figure 33). The first two loads were approximately 

0.304 kip each, representing the majority of the loads from the truck bed. The load 

simulating the weight from the front axle is approximately 0.076 kips, or one-quarter 

the weight of the two rear axles.  
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(a) 

 

(b) 

 

(c) 

Figure 33: Moving Truck Load Cases (a) LC3_A1 (b) LC3_A2 (c) LC3_A3 
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Table 3 describes each load case and specifies the load intensity (load level) as well. 

 

Table 3: Load Case (LC) Descriptions 

Load by Location (lbs.) Load 
Case 

Load 
Level 

Total # 
of 

plates A1 A2 A3 A4 A5 

1/3 8 - 150.2 - 151.7 - 
2/3 14 - 301.5 - 303.0 - LC1 
3/3 22 - 415.5 - 415.9 - 

  
1 11 416 - - - - 
1 11 - 416 - - - 

1/3 4 - - 152 - - 
2/3 8 - - 304 - - 
3/3 11 - - 416 - - 
1 11 ` - - 416 - 

LC2 

1 11 - - - - 416 
  

1 18 304 304 76 - - 
1 18 - 304 304 76 - LC3 
1 18 - - 304 304 76 

 

After careful consideration, and initial load testing, the author decided that the 

intermediate load (1/3, 2/3 load levels) cases were to be eliminated because sufficient amounts of 

data would be generated with heavier loads, which also provided a better response from the 

sensors on the test beam. It should be shown that the load placed on the test structure must be 

great enough to elicit good responses from the sensors collecting the required data. For the actual 

loads, steel plates weighing approximately 38 lbs. each were manually stacked at the designated 

load locations.  
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Material Testing for Initial Values 

As stated previously, a major contributor to the success of the optimization procedure is 

the ability to have good initial values to start with. Without proper understanding of the objective 

function, multiple initial values, ranging over a widespread area must be utilized to successfully 

locate the global minimum. This is to ensure that initial guesses do not become trapped in local 

minima. One method used to determine the initial values or “starting points” for the optimization 

programs, is to perform material testing on the support pads and steel angles on the Universal 

Testing Machine (UTM) to obtain vertical stiffness values (Figure 34). 

 

 

Figure 34: Compression Tests of 5 Duro50 Pads Using UTM 

 

Compression tests on the neoprene pads were performed in order to obtain stiffness 

values to use as the initial guesses (Figure 35). Compression tests also help to identify the 

behavior or consistency in material properties for individual pads as well as pads stacked 

together vertically.  
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Figure 35: Vertical Stiffness Values for Different Neoprene Pads 

 

All of the pads tested were gradually loaded with 1 kip and then unloaded. Due to the 

pads nonlinear behavior, load versus deflection curves were plotted for every compression test 

case; linear regions were identified and highlighted by a linear trend line. This is a rough 

approximation since the pads exhibit visco-elastic behavior and change stiffness with respect to 

both time and load. Using basic structural analysis, the reactions that the supports may 

“experience” for each load case can be estimated. The vertical stiffness values were now 

approximated by using the estimated reactions with the corresponding linear trend line for that 

region (Figure 36). 
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Figure 36: Vertical Stiffness Derivation from Material Tests 

 

 With the vertical stiffness values based from the material tests now assumed to be known 

with a high degree of certainty, we can also check them using the stiffness relationship shown in 

equation (11). This equation was used to check the nominal value for the pad stiffness and 

compare with the slope values from material tests. Using the same material test plots, the data is 

converted to a stress versus strain plot so that the Modulus of Elasticity, E, can be estimated. 

Estimating E values for non-linear materials is often very hard to accomplish so linear-elastic 

regions were assumed for the plots. Using the same process as for the vertical stiffness values, E 

is deduced from the linear regions corresponding to the desired load. The Modulus of Elasticity 
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is now substituted into the following equation, along with the area, A and the thickness 

(“length”) of the pad, 

L
AEkvert =       (11)  

Material property tables for neoprene can be found on a few websites, and this is useful for 

comparing our E values with the published values. From Figure 37, we can see that the table 

shows the range of Elastic Modulus for Durometer 30A-95A neoprene. The pads used in this 

experiment were of Hardness Scale A, so we can use these values to check the ranges of E that 

we solved for from the material tests. Assuming that the Durometer 30A represents the most 

flexible neoprene pad that we could have, then E will correspond to a value of 100 psi. Solving 

equation (11) for a six inch diameter neoprene pad, 0.5” thick, yields the following 
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If Durometer 95A represents the most rigid pad possible, then E corresponds to 3000 psi. In a 

similar fashion, we solve for the stiffness of the pad as 

 

( )( )

./80.169
5.0

33.28

95

2

95

inkipk
in

ksiin
L

AEk

Av

Av

=

==  

 

56 



So now we have our corresponding maximum and minimum nominal stiffness values limits for 

the neoprene pads we have tested. 

 

 

Figure 37: Mechanical Properties for Neoprene (Courtesy of Moldeddimensions.

 

A sample Table, Table 4 shows the difference in stiffness and elastic modulus for the d

pads of the same material (varying stiffness). Once the data for all the pads is finalized

stiffness values are compared with the nominal values and will be used for initial gues

unknown stiffness parameters during parameter estimation analysis (Table 5).
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Table 4: Sample Material Test Results for Duro50 Pads 

Exp. Nominal E (psi) Exp. Nominal E (psi) Exp. Nominal E (psi) Exp. Nominal E (psi)
1 34.1 35.2 621.6 58.4 61.1 1081.1 58.4 61.1 1081.1 70.1 72.3 1279.1
2 46.9 50.0 884.2 65.4 65.3 1155.3 65.4 65.3 1155.3 76.1 75.7 1338.9
3 42.9 44.0 778.1 53.2 55.9 989.2 60.3 69.1 1221.8 64.1 66.7 1178.9
4 35.1 37.6 664.9 40.5 42.4 749.0 51.8 53.6 947.9 60.9 68.0 1202.5
5 31.5 35.2 622.8 43.2 43.5 769.8 68.8 72.2 1276.1 75.0 81.8 1445.9
6 26.2 26.8 473.9 42.2 43.7 772.9 59.6 61.3 1083.1 65.8 67.8 1199.4
7 33.5 35.5 627.8 44.9 47.8 845.8 62.1 66.0 1167.1 72.0 73.3 1296.8
8 33.0 39.2 692.6 49.2 52.7 932.4 63.8 80.0 1414.7 71.4 72.4 1280.3

10 30.2 33.0 582.9 49.7 50.3 888.7 59.2 63.0 1114.9 70.8 70.4 1244.9
34.8 37.4 661.0 49.6 51.4 909.4 61.0 65.7 1162.5 69.6 72.0 1274.1

Pad 
#(s)Pad Setup 100 lb (k/in) 200 lb (k/in)

1 Duro50 

Average

400 lb (k/in) 600 lb (k/in)

 

Table 5: Averaged Stiffness Values for Different Load Levels 

Pad  Type

Test Mat. Test Nominal Mat. Test Nominal Mat. Test Nominal Mat. Test Nominal
1 Duro50 34.8 37.4 49.6 51.4 61.0 65.7 69.6 72.0
1 Duro 70 52.5 59.1 79.4 88.3 94.2 109.5 113.6 128.7
5 Duro50 4.6 4.6 6.5 6.5 8.8 8.7 9.2 9.2
5 Duro 70 19.3 19.9 27.9 26.9 32.7 32.0 32.7 32.0

100 lb range (k/in.) 200 lb range (k/in.) 400 lb range (k/in.) 600 lb range (k/in.)

 

 

The same procedure is repeated for all of the required boundary condition setups, including: 1 

Duro70, 5 Duro50, 5 Duro70, and the steel pin supports.  

Table 5 also shows the behavior of stacking neoprene pads, if we solved the following 

equation (12) using individual pad stiffness results 

∑
=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ N

n nT kk 1

11       (12) 

we will see that the total stiffness, kT for the stack of individual pads, is the same as a stack of 

pad being tested at once on the UTM. We can also conclude that the 5 Duro50 scenario will yield 

the highest deflections for the experimental load tests due to having the lowest stiffness value. 

An interesting side note is that the material test for the steel angle shows a non-linear curve for 

the force versus displacement data (Figure 38). 
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Figure 38: Sample Material Test Plot for Steel Angle Support 

 

The most likely explanation for these results is that as the angle is being loaded, the legs were 

actually “kicking” outwards and causing the support to deflect small amounts. This behavior 

only appears to happen within the first couple hundred pounds of loading, before remaining 

constant for the rest of the load test. 

Boundary Condition (BC) Selection 

In order to measure the structural response of the test beam under various boundary 

conditions, the following support conditions were initially looked at: 
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Table 6: Initial Boundary Condition Cases 

BC Name Left Support Right Support
BC1 pin pin
BC2 4 Duro50 pads 4 shim plates + pin

BC3a 1 Duro50 1 Duro50
BC3b 5 Duro50 5 Duro50
BC4a 1 Duro70 1 Duro70
BC4b 5 Duro70 5 Duro70
BC5a 1 Duro50 1 Duro70
BC5b 5 Duro50 5 Duro70  

 

Initially, all of the BC cases (8 total) were utilized in the experimental tests, and the 

results were analyzed. It was assumed that these cases represented a wide spectrum of support 

conditions, and after preliminary analysis of the data, four cases stood out more than the others. 

For the experimental test cases, four out of the eight total BC setups would be used. The four 

BC’s represent a good range of varying support conditions and are listed as follows: 

1. BC1 – Serves as the “baseline” case for the experimental tests. Steel 1x1x1/8 

angles were used for the supports, representing a hypothetical pin connection. It 

is assumed that this setup is behaving closely to that of a truly pinned support (no 

moment capacity). 

 

    Figure 39: Pin Supports (BC1) 
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2. BC3a – This case represents boundary conditions with increased flexibility. For a 

real-life scenario this would represent a structure whose supports have suffered 

from minor settlement or damage. 

 

 

Figure 40: 1 Duro50 Pad Support (BC3a) 

 

3. BC3b – The third BC setup represents a structure whose supports have 

undergone significant amounts of settlement (possibly due to severe damage). 

Out of the four BC used in the experiments, this case has the most flexibility at 

the supports. 

 

 

Figure 41: 5 Duro50 Pad Support (BC3b) 
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4. BC5b – By using two different pad types at the supports, this case represents a 

structure which may have varying degrees of flexibility at both supports. At one 

support, the 5 Duro50 pads were extremely flexible, while the 5 Duro70 pads 

offer more flexibility than the pin case (BC1), but were not as severe as the 5 

Duro50 pads. 

 

   

    (a)                    (b) 

  Figure 42: (a) 5 Duro70 Pad Support, L-Side (b) 5 Duro50 Pad Support, R-Side   

Experimental Setup 

The structure used for the experimental tests was a simply supported steel W8x13 I-

beam. The overall length of the beam was 156 in, while the clear span was 144 inches (Figure 

43). For ease of access to sensors and datalogging equipment, the beam rested on two steel 

sawhorses each measuring 3 feet in height. The boundary conditions were modified by changing 

the material that sits on the support, whether it was a neoprene pad (different types and numbers 

of pads) or a steel angle. Because the length-to-depth ratio is greater than 10, only bending 

62 



deformations were considered (Kassimali, 1999). The section properties were verified by using a 

precise instrument such as a digital caliper, to verify published values for the flange/web widths 

and thicknesses. It was discovered that the actual dimensions of the beam varied slightly than 

their published values as defined in the American Institute of Steel Construction Manual (AISC, 

2003) Load and Resistance Factored Design (LRFD), 3rd edition. The following table compares 

the actual versus published AISC dimensions for the W8x13 beam (Table 7). 

 

Table 7: W8x13 Beam Dimension Comparison 

Web Axis X-X
Thickness, 

tw
Width,     

bf

Thickness,  
tf

I

in.2 in. in. in. in.4

Actual 3.96 0.255 4.06 0.255 39.3
AISC 3.84 0.230 4.00 0.255 39.6

Flange
AreaW8x13

 

 

For this study, the author assumed that the modulus of elasticity (E), cross-sectional area 

(A) and moment of inertia (I) were their true values (AISC). Even though there were small 

differences between the actual and published dimensions of the I-beam, the boundary conditions 

were still considered the primary source of error between the FEM data and experimental data. 

The beam properties (E, I, A) were not considered unknown, such that they needed to be updated 

using the experimental data. This approach can also be considered analogous to a real life case 

where minor variations may exist between the published material and geometry values and the 

actual values where boundary conditions may impact the structural behavior considerably more 

than these variations.   
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Figure 43: Experimental Test Beam Setup 

 

Only vertical loads were carried out during experiments and were manually applied by 

stacking 38 lb steel plates at the designated load points. The experimental force locations were 

also dictated by where they could be applied freely, without interfering with the existing sensors. 

A very important aspect of this study is that, the beam was instrumented very densely. 

Displacement measurements were made by using seven cable transducers with a resolution of 

±0.0004 in and a total working range of 1 in. Changes in rotation were measured using seven 

vibrating wire tiltmeters with resolutions of ±10 arc-seconds and a range of ±15 degrees. Seven 

piezoelectric seismic accelerometers were used to record time-history data. The acceleration data 

was used to validate the experimental natural frequencies and mode shapes against those of the 

updated finite element model, for each boundary condition case. 
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CHAPTER FIVE: TEST RESULTS AND DISCUSSION 

Optimization Load Selection 

After completing many load case simulations, it was evident that PARIS had difficulty 

using just one load case to update the unknown stiffness parameters (Figure 44). Results from 

SPE were obtained and will be commented on later in the section. Due to the measurement and 

modeling error some of the load cases proposed failed to update to the correct assumed 

parameters. 

 

Figure 44: Experimental Vs. FEM (PARIS Updated) Displacement Values 
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Although the objective function plot showed the algorithm converging to a minimum, physically, 

the updated stiffness parameter values did not make sense. When assigned to the springs in the 

FEM and a different load analysis was conducted, the resulting displacements indicated that the 

support conditions were much stiffer than the experimental setup. There was an average percent 

difference between the two data sets of around 20-25%; still too high to be considered successful 

for parameter estimation. As a result, combining multiple load sets into new load combinations 

for parameter estimation was considered. 

In order to obtain a better representation of the overall behavior of the beam, multiple 

load cases were used for the final optimization process. By combining different load sets, there 

are more measurements to work with, which is akin to providing more data regarding the beam.  

 

 

Figure 45: Load Combination LC2_A1A2A3AA5 
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The load case shown in Figure 45 represents the maximum number of applied loads to the test 

beam that we can have. The data incorporates measurement responses from all of the single point 

load cases we measured. Enough information should be provided to have good parameter 

estimation results for the unknown stiffness parameters. The next load combination that was used 

is shown in Figure 46 as three point loads on the left hand side of the beam. This load case is a 

combination of single point loads placed at A1, A2 and A3 load locations. The configuration 

shown here allowed us to see if the unknown parameters could be updated if only results from 

loads on half of the structure were measured. 

 

 

Figure 46: Load Combination LC2_A1A2A3 
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The load case illustrated by Figure 47 is the opposite of load combination LC2_A1A2A3 

in that only the results from point loads on the right side of the beam (at A3, A4 and A5) were 

known. 

 

 

Figure 47: Load Combination LC2_A3A4A5 

 

The final load case combination selected for parameter estimation was a combination of 

single point load cases at A1, A3, and A5 (Figure 48). The author wanted to see if using load 

case data from the 1/3 points of the beam was sufficient enough to characterize the entire beam 

and supports. This combination also use two fewer point load data sets than found in the 

LC2_A1A2A3A4A5. Using few data sets means fewer load cases were needed, possibly saving 

testing money for projects in the real-world.  
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Figure 48: Load Combination LC2_A1A3A5 

Measured DOF Selection 

After deciding which load cases and combinations we will use for the parameter 

estimation studies, the author would like to analyze the impact of using different combinations 

and numbers of measurements. By analyzing the parameter estimation results for these different 

cases, we can conclude which combinations of sensors will yield the best results. Measurement 

error also plays a role in the sensor selection process, since there is the possibility that some DOF 

will overshadow others or are more prone to measurement error. In real-life scenarios, there is a 

direct relationship between cost and the number of sensors used. Finding the minimum number 

of sensors required will usually be the most cost-effective solution to the problem. The following 

sensor combinations will be run for each load combination mentioned in the previous section. 

69 



The first scenario we will analyze is one where all available measurements were used for 

updating the unknown parameters (Figure 49). 

 

 

Figure 49: 12 Measured DOF Setup 

 

Of the 14 total global DOF, only two were not equipped with sensors to record measurements. 

Deflections at the supports (DOF 1 and 13) were unable to be measured due to the setup of the 

test beam and interference with the supports. This case represents a heavily instrumented 

structure, but due to support constraints, displacements cannot be made at the supports (i.e. 

bridges). Once the results for the full 12 MDOF cases were collected, a measurement case 

utilizing 7 total sensors will be analyzed (Figure 50). 
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Figure 50: 7 Measured DOF Setup 

 

The reason for selecting 7 measured DOF is that it first lowers the total number of 

sensors required and secondly represents a good mix of measurements, symmetric about the 

centerline of the test beam. It is also here where we will start to look at the affect of reducing the 

number of measurements and the impact it has of the “clarity” of the objective function plot, 

J(k). For our final sensor combination, we will analyze the results of using only 4 measurements 

on the test beam (Figure 51). This case represents the minimum number of sensors that will be 

used to accurately characterize the beam. The rotations at the supports (DOF 2 and 14) as well as 

displacements at DOF 3 and 11 were used to update the unknown stiffness parameters. Again, all 

of the sensor and load combinations will be run for each case giving us the number of total cases, 

(NTC) = 4 boundary conditions x 4 load combinations x 3 sensor combinations, for a grand total 

of 48 parameter estimation analysis. This process will also be replicated using SPE in order to 

compare the accuracy of the two programs, giving us a total of 96 analysis cases. 
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Figure 51: 4 Measured DOF Setup 

SPE Statistical Analysis 

The author first used single force load sets to test whether or not SPE worksheet would be 

able to update the unknown stiffness parameters. As mentioned previously, PARIS had trouble 

using single force load sets to update the parameters, so load combinations were used. SPE was 

able to use single force load sets because the spreadsheet is setup strictly for this specific 

problem and the error functions were easily defined. All of the original load cases, including 

LC1_Full, LC2_A1, etc. as mentioned before were used to update for the unknown spring 

stiffness parameters using SPE. All 12 measurements were used for each individual load case 

parameter estimation study. Once all of the spring values were identified, the mean and standard 

deviation were calculated along with plus/minus two standard deviations, which will form the 

probability bounds for an example load case. The statistical bounds provide a range in which the 

plotted displacements from the updated FEM should fall between. Updated stiffness parameters 

from LC1 will be input into the SAP2000 FEM and then LC3_A2 will be applied to the model. 
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The displacements from the updated FEM will then be plotted on the same chart as the 

confidence intervals (Figure 52). 

 

 

Figure 52: Measurements & Identified Deflections with Statistical Bounds (BC1_LC3_A2) 

 

From the figure we can see that when updated spring values from LC1 were used to 

update the FEM with a different load case (LC3_A2), the displacement profile falls well within 

the ±2 standard deviation bounds. 

The same process is then repeated for two other cases, namely BC3a and BC3b. SPE was 

unable to update the parameters for BC5b (the most flexible) using the load cases specified. We 
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will revisit this particular BC later on and use multiple load combinations along with PARIS to 

try and update the spring parameters. Figure 53 shows the confidence intervals for BC3a (1 

Duro50 at each support). 

 

 

Figure 53: Measurements & Identified Deflections with Statistical Bounds (BC3a_LC3_A2) 

 

Again, after selecting a different load case to obtain the updated FEM displacements, the 

results fit well within the bounds. The same can also be said for the BC3b results and statistical 

bounds shown in Figure 54 below. There is a slight bit of discrepancy between a few of the data 
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points but that is to be expected since this BC is the most flexible of them all and we were 

modeling the supports as linear-elastic, rather than the non-linear material that they were. 

 

 

Figure 54: Measurements & Identified Deflections with Statistical Bounds (BC3a_LC3_A2) 

 

 For each BC that is analyzed, updated stiffness values were entered into tables that can 

provide comparisons between the left (K1) and right (K2) supports. Table 8 lists the updated 

values for BC1, and using MATLAB, we can plot a histogram of each support (K1 and K2) and 

use the distribution fitting tool to fit the best curve to the data and determine the mean value for 

each case. 
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Table 8: SPE Updated Spring Stiffness Values for BC1 Using Single Force Load Sets 

BC # LC # K1 (k/in.)   
SPE

K2 (k/in.)   
SPE

LC1 42.97 46.03
LC2_A1 88.99 43.34
LC2_A2 54.83 45.65
LC2_A3 45.00 81.48
LC2_A4 39.79 92.11
LC2_A5 32.48 63.42
LC3_A1 68.18 124.56
LC3_A2 58.15 108.51
LC3_A3 45.70 104.92

BC1

 

 

Table 9: SPE Updated Spring Stiffness Values for BC3a Using Single Force Load Sets 

BC # LC # K1 (k/in.)   
SPE

K2 (k/in.)   
SPE

LC1 31.20 27.50
LC2_A1 32.91 14.82
LC2_A2 22.30 26.16
LC2_A3 24.61 23.00
LC2_A4 22.37 36.44
LC2_A5 20.61 35.70
LC3_A1 28.18 18.66
LC3_A2 26.86 24.37
LC3_A3 18.28 40.78

BC3a

 

 

Table 10: SPE Updated Spring Stiffness Values for BC3b Using Single Force Load Sets 

BC # LC # K1 (k/in.)  
SPE

K2 (k/in.)  
SPE

LC1 6.22 6.32
LC2_A1 6.74 5.00
LC2_A2 6.83 5.30
LC2_A3 6.33 6.08
LC2_A4 5.99 6.60
LC2_A5 6.03 6.70
LC3_A1 6.75 6.43
LC3_A2 6.59 6.55
LC3_A3 6.75 7.01

BC3b
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From the data we can see that for the most part (with the exception of BC1 to a certain degree), 

that the stiffness value generally update to around the same value. The axis of the histograms 

reference the stiffness values (“Data” on x-axis) and the frequency at which they appear 

(“Density” on y-axis). Histograms of the stiffness data are shown in the following figures: 

 

        

Figure 55: Histograms for BC1 Supports K1 and K2 

 

        

Figure 56: Histograms for BC3a Supports K1 and K2
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Figure 57: Histograms for BC3a Supports K1 and K2

 

The histograms serve as a visually aid to let use see the frequency and distribution of the updated 

stiffness terms. The histograms for both BC3a and BC3b show good correlation for both 

supports, and in fact, we can check the updated values against those that were predicted from the 

material tests (Table 11). 

 

Table 11: Comparison of Mean Stiffness Values vs. Material Test Data 

BC # K1 (k/in.)  
Mean

K2 (k/in.)   
Mean

Mat. Test 
(k/in.)

BC1 52.89 78.89 81.30
BC3a 25.26 27.49 34.80
BC3b 6.47 6.22 6.50  

 

 Values from Table 11 represent the stiffness values of the supports based on the 

experimental data from all of the single load force sets. The mean stiffness values listed in Table 

11 were close to the stiffness values from the material tests (corresponding to the 100-200 lb. 
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load level). There appears to be some discrepancy between K1 of BC1 and the actual test data, 

which is probably due to the limitations of SPE during optimization and the non-linear behavior 

of the pads at different load levels.  

BC1 Parameter Estimation Results 

A total of four load combinations and three different sensors combinations were used to 

update the stiffness parameters for the baseline case BC1. We considered this case the baseline 

condition because it represented the BC with the stiffest support conditions, or a real-life 

scenario of a beam with no damage at the supports. A total of 12 analysis cases were performed 

and the results appear in Table 12. 

 

Table 12: Updated Spring Stiffness Values for BC1 w/ Multiple Load & Sensor Cases 

BC # LC # MDOF
K1 (k/in.)   

SPE
K2 (k/in.)   

SPE
K1 (k/in.)   
PARIS

K2 (k/in.)   
PARIS

LCP1 12 61.38 60.70 62.10 61.49
LCP2 12 65.40 53.33 61.90 71.01
LCP3 12 43.68 71.97 50.75 61.60
LCP4 12 71.24 56.67 64.33 66.30
LCP5 7 67.97 70.73 63.92 64.33
LCP6 7 67.30 80.73 61.65 66.30
LCP7 7 47.32 78.02 63.90 61.47
LCP8 7 67.97 70.73 61.90 61.48
LCP9 4 71.23 77.00 59.70 61.40

LCP10 4 75.75 43.10 61.46 60.79
LCP11 4 59.12 80.42 62.59 61.50
LCP12 4 71.23 77.00 62.40 60.19

Load Combination

BC1

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5  

 

From the table we can see that there is consistency between the values for each MDOF subgroup, 

as well as the entire data set. We may not fully expect the stiffness parameters to update to the 

same values regardless of the load combination use because of the pads non-linear behavior. In 
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addition, small deflections were taking place at the supports and this may also be contributing to 

the error from updating the support conditions. Using the data from Table 12, mean values for 

each MDOF case were used to update the initial FEM (Table 13).  

 

Table 13: Mean Updated Spring Stiffness Values for BC1 

BC # MDOF K1µ (k/in.)  
SPE

K2µ (k/in.)  
SPE

K1µ (k/in.)  
PARIS

K2µ (k/in.)  
PARIS

12 60.42 60.67 62.61 61.21
7 62.64 75.05 62.84 63.39
4 69.33 69.38 62.40 60.19

BC1
 

 

As can be seen, there is not a large difference between the SPE and PARIS updated stiffness 

values, and this can be further verified by looking at plot comparing the experimental and 

updated displacements for a typical LC (Figure 58).  
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Figure 58: Comparison of Updated FEM and Experimental Displacements for BC1_LC1 

 

Although we were assuming a pin support condition for BC1, in reality the supports were 

somewhat deflecting and it was appropriate to accommodate for this by modeling the supports as 

vertical springs. It should be noted that the support deflection for the experimental data is shown 

as zero since no measurements were taken at the supports. There is good correlation between the 

SPE and PARIS values indicating that for this BC, both were capable of updating the unknown 

stiffness parameters successfully. Also, the differences in the number of MDOF used to update 

for the parameters does not have a great effect on the outcome of the results. There were only 
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minor differences in the stiffness values, which were not significant enough to change the 

structural behavior of the beam. 

Dynamic test data is also used to validate the updated finite element models. Using the 

updated model, dynamic results were extracted and then compared to the experimental data 

(Table 14). 

 

Table 14: BC1 Model Validation Using Dynamic Data 

BC # Mode # Exp. (Hz)
SPE 

(12MDOF) 
Hz

SPE 
(7MDOF) 

Hz

SPE 
(4MDOF)  

Hz

PARIS 
(12MDOF) 

Hz

PARIS 
(7MDOF) 

Hz

PARIS 
(4MDOF) 

Hz
37.73 38.18 38.23 37.82 37.89 37.78
1.34% 0.17% 0.03% 1.12% 0.92% 1.22%

109.31 113.62 114.28 110.12 110.84 109.75

10.13% 14.48% 15.14% 10.95% 11.67% 10.57%

168.10 176.06 176.64 169.46 170.66 168.85
17.02% 22.56% 22.97% 17.97% 18.80% 17.54%

1

2

3

BC1

38.24

99.25

143.65
 

 

Table 15: BC1 MAC Value Comparison 

BC # LC SPE 
12MDOF

PARIS 
12MDOF

SPE 
7MDOF

PARIS 
7MDOF

SPE 
4MDOF

PARIS 
4MDOF

Mode 1 0.997 0.997 0.997 0.997 0.997 0.997
Mode 2 0.989 0.987 0.994 0.989 0.987 0.986
Mode 3 0.960 0.957 0.973 0.960 0.960 0.956

BC1
 

 

The frequencies for the first mode shape do not differ that much from models using different 

combinations of sensors (Table 15). The first mode is the critical mode and if we fail to capture 
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it, then we will miss all other behavior. Again, using 4MDOF versus using all 12MDOF does not 

appear to have a great impact on the updated finite element models. 

 Further visualization is facilitated in order to show the updated mode shape 1 versus the 

experimental data (Figure 59). 

 

 

Figure 59: Mode Shape 1 Comparison for Experimental & Updated FEM Data (BC1) 

 

A slight discrepancy in the mode shape is most likely attributed to experimental measurement 

error, although the SPE and PARIS values were in agreement with one another. 
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BC3a Parameter Estimation Results 

The same load and MDOF combinations were used to update the pad stiffness parameters 

for BC3a. The results of the parameter estimation studies are shown in Table 16.  

 

Table 16: Updated Spring Stiffness Values for BC3a w/ Multiple Load & Sensor Cases 

BC # LC # MDOF
K1 (k/in.)   

SPE
K2 (k/in.)   

SPE
K1 (k/in.)   
PARIS

K2 (k/in.)   
PARIS

LCP1 12 24.56 30.65 31.99 56.32
LCP2 12 27.06 21.03 34.66 53.49
LCP3 12 20.99 33.50 33.94 55.36
LCP4 12 26.45 29.24 34.74 62.16
LCP5 7 32.01 28.25 35.22 61.61
LCP6 7 34.50 21.34 22.02 27.00
LCP7 7 26.28 30.22 19.67 28.28
LCP8 7 32.01 28.25 21.98 20.40
LCP9 4 34.43 28.37 23.45 20.45

LCP10 4 40.14 11.44 27.43 27.65
LCP11 4 24.61 30.60 28.46 26.15
LCP12 4 34.43 28.37 27.98 28.82

BC3a

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3

A3A4A5
A1A3A5

A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3

Load Combination

 

 

From the data, it is evident that the uncertainties in the neoprene pads, specifically the non-

linearity, play an important role in capturing the stiffness parameters correctly. Load 

combination selection also contributes to some of the error in the estimated parameters. Again, 

we use mean values for each MDOF case and use them to update the initial FEM (Table 17).  

 

Table 17: Mean Updated Spring Stiffness Values for BC3a 

BC # MDOF K1µ (k/in.) 
SPE

K2µ (k/in.) 
SPE

K1µ (k/in.) 
PARIS

K2µ (k/in.) 
PARIS

12 24.77 28.60 33.72 56.83
7 31.20 27.01 24.72 34.32
4 33.40 24.69 27.98 28.82

BC3a
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Using all 12 MDOF for PARIS analysis indicates that measurement or modeling error is causing 

the parameters to update to very stiff values. This goes back to the idea that having more sensor 

data may make the objective function “foggy”, whereas less MDOF, 4MDOF in this case, appear 

to update the parameters to their correct values. This becomes evident if we plot the updated 

FEM displacements versus the experimental data (Figure 60). 

 

 

Figure 60: Comparison of Updated FEM and Experimental Displacements for BC3a_LC1 

 

From Figure 60, we can see that the PARIS case using 12 MDOF incorrectly updates the 

parameters to stiffer values, hence the less displacement. The other combination of MDOF and 
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loads were in agreement with one another along with the experimental data. Dynamic test data in 

Table 18 and MAC value comparisons in Table 19 indicate that the updated models were stiffer 

than the actual test structure, but a plot of the first mode shape (Figure 61) shows that there was 

generally good correlation between the models. 

 

Table 18: BC3a Model Validation Using Dynamic Data 

BC # Mode # Exp. (Hz)
SPE 

(7MDOF) 
Hz

PARIS 
(7MDOF) 

Hz
1 37.32 33.98 33.90
2 100.96 82.20 81.99
3 152.20 131.56 132.40

BC3a
 

 

Table 19: BC3a MAC Value Comparison 

BC # LC SPE 
7MDOF

PARIS 
7MDOF

Mode 1 0.990 0.988
Mode 2 0.976 0.990
Mode 3 0.943 0.893

BC3a
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Figure 61: Mode Shape 1 Comparison for Experimental & Updated FEM Data (BC3a) 

BC3b Parameter Estimation Results 

The author expected this BC test to have the most trouble and error associated with it due 

to the fact that the stack of 5 Duro50 pads represented very flexible support conditions. Although 

this BC was initially thought to have high non-linearity, material test plots showed the opposite 

(Figure 62). 
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Figure 62: Material Test Plot for 5 Duro50 Neoprene Pads Stacked Together 

 

The stiffness of the pads is non-linear only under low loads and once it reaches 300 pounds, for 

the most part remains linear. When compared to other material test plots such as those from 

individual pad Duro50 pad tests (Figure 36), the degree of non-linearity is significantly different. 

Single Duro50 pads show large increases in vertical stiffness under low applied loads. It is 

possible that the parameter estimation studies for the BC and LC combinations were successful 

because the material (when stacked) exhibits linear behavior. Table 20 illustrates the success of 

both SPE and PARIS in updating the unknown stiffness parameters. When compared with other 

results from different BC’s, the fluctuation in updated values is small. 
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Table 20: Updated Spring Stiffness Values for BC3b w/ Multiple Load & Sensor Cases 

BC # LC # MDOF
K1 (k/in.)   

SPE
K2 (k/in.)   

SPE
K1 (k/in.)   
PARIS

K2 (k/in.)   
PARIS

LCP1 12 6.40 6.39 6.47 5.81
LCP2 12 6.61 5.75 8.33 5.22
LCP3 12 6.05 6.57 8.21 5.71
LCP4 12 6.41 6.45 7.52 5.81
LCP5 7 6.42 6.40 6.13 5.96
LCP6 7 6.51 6.02 6.14 5.97
LCP7 7 6.16 6.48 6.34 6.18
LCP8 7 6.42 6.40 6.19 5.93
LCP9 4 6.56 6.48 6.01 6.01

LCP10 4 6.70 5.23 5.88 5.98
LCP11 4 5.78 6.59 6.11 6.58
LCP12 4 6.56 6.48 5.94 6.01

Load Combination

BC3b

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5  

 

Table 21 shows the mean values calculated for this boundary condition setup and the good 

correlation between PARIS and SPE analysis as well as varying MDOF setups. 

 

Table 21: Mean Updated Spring Stiffness Values for BC3b 

BC # MDOF
K1µ (k/in.)  

SPE
K2µ (k/in.)  

SPE
K1µ (k/in.)  

PARIS
K2µ (k/in.)  

PARIS

12 6.37 6.29 7.63 5.64
7 6.38 6.32 6.20 6.01
4 6.40 6.19 5.98 6.14

BC3b
 

 

A plot of the displacements from the updated FEM is shown below (Figure 63). For having 

highly flexible supports, the results of the different studies correlate well with one another. The 

discrepancy between the case where PARIS uses 12MDOF and the other results is related to 

measurement error affecting the objective function (as mentioned previously). 
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Figure 63: Comparison of Updated FEM and Experimental Displacements for BC3b_LC1 

 

Validation of the updated FEM’s using dynamic measurements also proves reliable. For 

the most part the measured frequencies (Table 22) agree with the results of the experimental 

tests. MAC value comparisons illustrate the good correlation of the experimental and updated 

FEM mode shapes (Table 23). Like all previous studies involving neoprene pads, some of the 

differences in the values may be related to our assumptions that the pads were treated as being 

linear-elastic. 

 

90 



Table 22: BC3b Model Validation Using Dynamic Data 

BC # Mode # Exp. (Hz)
SPE 

(7MDOF) 
Hz

PARIS 
(7MDOF) 

Hz
1 25.50 21.88 21.55
2 52.83 40.70 39.93
3 95.51 96.52 96.10

BC3b
 

 

Table 23: BC3b MAC Value Comparison 

BC # LC SPE 
7MDOF

PARIS 
7MDOF

Mode 1 0.998 0.997
Mode 2 0.999 0.999
Mode 3 0.991 0.991

BC3b

 

 

A plot of the first mode shape (Figure 64) using experimental data and the updated FEM is 

shown below. The experimental model is assuming the model is stiffer than what the updated 

FEM updated to. SPE and PARIS both perform well when optimizing the objective function for 

this highly flexible case. 
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Figure 64: Mode Shape 1 Comparison for Experimental & Updated FEM Data (BC3b) 

BC5b Parameter Estimation Results 

 This was the only BC that SPE failed to update the stiffness parameter on. In Table 24, 

the SPE program was not able to converge to the correct parameter on the left side of the beam. 

This issue might be due to the complexity of this particular boundary support case, in that there 

is and extremely flexible support on the left side, and a rather stiff support at the right side. It 

appears that PARIS had an easier time updating for both parameters successfully and the 

difference between the SPE results may be due to the algorithm driving the optimization method. 
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Table 24: Updated Spring Stiffness Values for BC5b w/ Multiple Load & Sensor Cases 

BC # LC # MDOF
K1 (k/in.)   

SPE
K2 (k/in.)   

SPE
K1 (k/in.)   
PARIS

K2 (k/in.)   
PARIS

LCP1 12 5.91 104.94 5.35 21.69
LCP2 12 5.86 5181.39 6.41 17.69
LCP3 12 5.62 111.05 7.78 17.73
LCP4 12 5.94 94.00 6.50 18.41
LCP5 7 5.95 191.61 5.77 29.90
LCP6 7 5.93 6438.20 5.77 27.02
LCP7 7 5.75 208.20 6.47 36.75
LCP8 7 5.95 191.61 5.32 38.22
LCP9 4 5.85 121.90 6.51 25.16

LCP10 4 5.84 6319.22 5.53 25.11
LCP11 4 5.84 111.75 6.00 24.94
LCP12 4 5.85 121.91 6.20 29.51

BC5b

A1A2A3A4A5
A1A2A3
A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3

A3A4A5

Load Combination

A1A3A5

A3A4A5
A1A3A5

A1A2A3A4A5
A1A2A3

 

 

Mean stiffness values were obtained for each MDOF case and again it was evident that SPE had 

problems, especially with updating right support parameter, K2 correctly (Table 25). Physically 

these values do not make sense, since they indicate that the right side of the beam is extremely 

stiff. 

 

Table 25: Mean Updated Spring Stiffness Values for BC5b 

BC # MDOF
K1µ (k/in.) 

SPE
K2µ (k/in.) 

SPE
K1µ (k/in.) 

PARIS
K2µ (k/in.) 

PARIS

12 5.83 1372.85 6.51 18.88
7 5.89 16243.50 5.83 38.23
4 5.84 1668.70 6.06 29.51

BC5b
 

 

If we plot the resulting displacements from the updated FEM along with the experimental 

data, a noticeable difference can be observed (Figure 65). This data indicates that the FEM from 

the PARIS estimations were much stiffer than the physical test structure. 
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Figure 65: Comparison of Updated FEM and Experimental Displacements for BC5b_LC1 

 

Since all the parameters could not be updated successfully by SPE, validation of the FEM 

using dynamic data was only carried out for the PARIS case (Table 26). 

 

Table 26: BC5b Model Validation Using Dynamic Data 

BC # Mode # Exp. (Hz)
SPE 

(7MDOF) 
Hz

PARIS 
(7MDOF) 

Hz
1 27.61 NA 24.61
2 63.43 NA 61.71
3 126.16 NA 126.43

BC5b
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Table 27: BC5b MAC Value Comparison 

BC # LC SPE 
7MDOF

PARIS 
7MDOF

Mode 1 NA 0.995
Mode 2 NA 0.998
Mode 3 NA 0.987

BC5b

 

 

Surprisingly, the results of the dynamic studies show that the stiffness parameters used to 

update the FEM were very good. There is not much error from mode number to mode number 

which suggests that the experimental data successfully captured the first three modes with high 

accuracy (Table 27). A plot of the first mode shape (Figure 66) shows that the PARIS model is 

stiffer at the right support, more so than the experimental data suggests. Both supports appear to 

differ in their flexibility and a cause for this might be due to the fact that the accelerometers at 

the ends were not directly in the middle of the supports. After analyzing the experimental data 

set for the dynamic case, some of the results suggested that the supports themselves were moving 

or “bouncing” (due to not being properly leveled). 
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Figure 66: Mode Shape 1 Comparison for Experimental & Updated FEM Data (BC5b) 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

1) What is the effect of elastomeric pad boundary conditions on the behavior of a particular 

structure (test beam)? 

• Boundary conditions have major impact on structural behavior in real life applications 

(even more so than localized damage in many cases):  The analytical and experimental 

studies showed that boundary conditions of the structures can be identified using static 

experimental measurements to update a preliminary FEM. This study showed that even a 

simple “pin-pin” boundary condition is not easy to idealize with an uncalibrated model 

despite the structure being in a controlled laboratory environment. Therefore, updating 

the FE models by using experimental data is useful to generate important information 

such as boundary condition behavior about the structure. It was also observed that 

changing the boundary conditions affects the structural behavior greatly. 

• Neoprene pads have a great impact on static and dynamic behavior for the particular 

problem also:  The affect of using flexible supports and their corresponding deflection 

and modal plots were identified by means of experimental methods. Using different type 

and number of neoprene pads were employed to simulate change in behavior in a 

laboratory environment at the boundary conditions due to reasons such as settlement and 

deterioration of the boundary supports of actual structures. 

• Material tests can be conducted to have good initial estimates for axial stiffness:  

Compression tests on the neoprene pads were performed in order to obtain stiffness 

values for the pads to use as the initial guesses for the case study. Compression tests also 
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help to identify the behavior or consistency in material properties for individual pads as 

well as pads stacked together vertically.  

 

2) Can we use a simplified parameter estimation program? How many sensors are necessary 

(minimum) for successful parameter identification? 

• Use of Spreadsheet Parameter Estimation (SPE) is easier, more suitable for quick 

analysis in CE design offices:  SPE a straight-forward spreadsheet program which can be 

setup and utilized by practicing engineers not considered experts in this field.  SPE 

resutls may be used as a starting point for “quick” analysis checks before carrying out 

more labor intensive analysis using PARameter Identification System (PARIS) software 

or other automated parameter estimation software. These results may also be used as 

initial values for PARIS analysis. 

• Is possible to obtain improved and reliable results using SPE:  The unknown stiffness 

parameters of the test beam boundaries were updated by using a simple optimization 

spreadsheet as well as a complex and robust parameter estimation program. The FE 

models were updated using parameters obtained from SPE and PARIS. The updated FE 

models were analyzed to get deflections under various load conditions. The results werer 

compared with experimental counterparts. When comparing the results of parameter 

estimation with PARIS and SPE results, the differences in the structural behavior due to 

updated parameters are not significantly different from each other as well as from the 

experimental results. However, there are also cases such as one end is extremely flexible 

(BC5b - mixed pads), SPE did not perform well while PARIS was successful.   
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• Based on the structure and parameters to be updated, less sensors may be used but more 

loading conditions may be helpful: A total of 12 measurements including deflection and 

rotations are employed for cases entitled as 12 MDOF. However, it is seen that the 

number of measurements can be reduced up to 4 MDOF to approximate the 12 MDOF 

results. The important issue is that more load combinations are needed to better capture 

and represent the actual behavior of the structure. The FE models that were updated using 

different sensor configurations (12, 7 and 4 MDOF) are compared against the static load 

test results as well as the dynamic frequency and mode shapes. Generally good 

correlation was observed validating the SPE and PARIS results.  

Recommendations 

• Use other boundary condition data (Pin + shims, Duro70 pads):  There are many other 

data sets of different boundary conditions, utilizing stiffer pads and a combination of 

mixed pads, as well as additional load cases. A comparative analysis of these data sets, as 

well as optimizing the number and locations of required sensors should be addressed in 

future studies. 

• Use strain data for parameter estimation:  Static strain measurement data should be used 

in conjunction with the static strain error function. Stain data was recorded for each of the 

load cases carried out in this analysis. Studies involving the impact of multiple types of 

strain sensors, such as foil-bonded strain gages, and vibrating wire gages for parameter 

estimation should be carried out. These types of sensors are common tools used by many 

engineering working in the field of structural engineering today. They are cost-effective 
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and unlike displacement transducers, require no frame of reference, so they can be placed 

just about anywhere on a structure. 

• Update moment of inertia values, Ixx:  In this study, the moment of inertia for the section 

was assumed to be the true value (even though field measurements indicated minute 

differences in the values). Future studies should involve updating for this unknown 

parameter in order to reduce some of the error which may be contributing to the 

estimation process. 

• Dynamic data for parameter estimation:  Dynamic data such as experimental frequencies 

and modes can be used as input for the parameter estimation process in order to update 

the mass of the structure. Updated mass parameters can then be used to update the FEM’s 

element mass properties, such that the error between the original and updated dynamic 

model is minimized. Again, independent dynamic tests can be used to correlate the 

experimental versus than updated dynamic model frequencies and mode shapes. 

• Restrain boundary supports (clamping, bolting, to provide rotational stiffness):  A 

variation of the same study can take place by clamping or fixing the beam and pads to the 

supports. By providing some rotational restraint at the boundaries, studies involving 

semi-rigid joints can take place as well as further analysis of the influence of neoprene 

pads. 

• Expand the spreadsheet optimization (SPE) concept and other parameter estimation 

approaches to UCF Grid structure and real life structures:  Parameter estimation studies 

involving the UCF grid structure can be conducted to explore issues when the structure is 

multi-dimensional and redundant. While the theory and procedures were proven 

successfully on a laboratory beam, the goal of future studies should be to implement 
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these ideas on real-life structures such as buildings or bridges. The use of practical 

optimization approach may be useful for condition assessment and load rating of actual 

structures by design engineers.  
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APPENDIX A: INSTRUMENTATION 
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Geokon Model 6350 Vibrating Wire Tiltmeter 

Range: ±15°
Resolution: 8 arc seconds

Accuracy: ±0.1% FSR
Linearity: 1.5% FSR

Frequency Range: 1400-3500 Hz
Diameter: 1.250"

Length: 7.375"
Temperature Range: -40 to +175° F

Material: 304 Stainless Steel

Geokon Model 6350
Technical Specifications

 

 Instrument Cable

Elastic Hinge 

Wire 

Electromagnetic Coil 

Mounting Flange

Housing 

1.25" O.D.
(32 mm)

Thermistor 

5.766"
(146.5 mm)

Damping Fluid 
(optional) 

0.875"
(22 mm)1.125"

(29 mm)

Seal Screw
1"

(25.4 mm)
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Geokon Model 4000 Vibrating Wire Tiltmeter 

Range (nominal): 3000 µε
Resolution: 0.1 µε

Accuracy: ±0.5% FS
Linearity: 0.5% FS

Frequency Range: 450-1200 Hz
Dimensions (gage): 6.125" x 0.750"

Temperature Range: -20 to +80° C
Active Gage Length: 5.875 in.

Geokon Model 4000
Technical Specifications
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Geokon Model 4100 Vibrating Wire Tiltmeter 

Range (nominal): 2500 µε
Resolution: 0.1 µε

Accuracy: ±0.5% FS
Linearity: 2.0% FS

Frequency Range: 1400-3500 Hz
Dimensions (gage): 2.250" x 0.250"

Temperature Range: -20 to +80° C
Active Gage Length: 2.008 in.

Geokon Model 4100
Technical Specifications
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SpaceAge Control Displacement Transducer 

Spaceage Control Position Transducer 
Technical Specifications 

Range: 13.2 in. 
Resolution: infinite signal 

Electrical Output: Analog 
Linearity: ±0.25% 

Nominal Mass: 3 oz 
Outline Dimensions: 1.7" dia. X 1.87" 

Nominal Cable Tension: 5 to 25 oz 
Temperature Range: -40 to +185° F 

max. cable accel: 20 g's  
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APPENDIX B: SPREADSHEET PARAMETER ESTIMATION (SPE)



PURPOSE:

PROBLEM:

BC1_LC1 BC1_LC2_A1 BC1_LC2_A2 BC1_LC2_A3 BC1_LC2_A4 BC1_LC2_A5 BC1_LC3_A1 BC1_LC3_A2 BC1_LC3_A3
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.01111 -0.00894 -0.00751
-0.00086 -0.00027 -0.00043 -0.00052 -0.00038 -0.00023 -0.00059 -0.00068 -0.00065
-0.02718 -0.01099 -0.01560 -0.01524 -0.01347 -0.00638 -0.02200 -0.02322 -0.02038
-0.00065 -0.00019 -0.00037 -0.00031 -0.00030 -0.00019 -0.00047 -0.00063 -0.00054
-0.04162 -0.01321 -0.02142 -0.02284 -0.01785 -0.01250 -0.03091 -0.03616 -0.03427
-0.00040 -0.00003 -0.00017 -0.00017 -0.00024 -0.00015 -0.00019 -0.00037 -0.00038
-0.04553 -0.01279 -0.02312 -0.02525 -0.02243 -0.01494 -0.02848 -0.03977 -0.03735
0.00000 0.00009 0.00009 -0.00002 -0.00006 -0.00005 0.00014 0.00003 -0.00005
-0.04121 -0.01139 -0.01958 -0.02350 -0.01992 -0.01584 -0.02708 -0.03489 -0.03560
0.00043 0.00014 0.00019 0.00020 0.00017 0.00007 0.00035 0.00037 0.00031
-0.02636 -0.00678 -0.01177 -0.01320 -0.01387 -0.01070 -0.01429 -0.01891 -0.02105
0.00067 0.00018 0.00031 0.00034 0.00040 0.00021 0.00049 0.00063 0.00063
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00319 -0.00530 -0.00638
0.00087 0.00024 0.00037 0.00049 0.00044 0.00028 0.00058 0.00077 0.00080

BC3a_LC1 BC3a_LC2_A1 BC3a_LC2_A2 BC3a_LC2_A3 BC3a_LC2_A4 BC3a_LC2_A5 BC3a_LC3_A1 BC3a_LC3_A2 BC3a_LC3_A3
-0.01780 -0.01177 -0.01197 -0.00884 -0.00822 -0.00429 -0.01644 -0.01430 -0.01181
-0.00082 -0.00024 -0.00045 -0.00054 -0.00038 -0.00023 -0.00058 -0.00073 -0.00063
-0.02983 -0.01506 -0.01985 -0.01701 -0.01312 -0.00886 -0.02712 -0.03071 -0.03119
-0.00077 -0.00016 -0.00040 -0.00040 -0.00037 -0.00021 -0.00058 -0.00070 -0.00063
-0.05024 -0.02195 -0.03105 -0.02988 -0.02361 -0.01531 -0.04569 -0.04519 -0.04105
-0.00040 0.00000 -0.00012 -0.00024 -0.00024 -0.00016 -0.00021 -0.00037 -0.00042
-0.05258 -0.01725 -0.02739 -0.03248 -0.02713 -0.01636 -0.04221 -0.04839 -0.04126
0.00007 0.00012 0.00010 0.00007 -0.00008 -0.00007 0.00016 0.00009 0.00005
-0.04780 -0.01371 -0.02100 -0.02906 -0.02492 -0.01652 -0.03346 -0.04448 -0.04414
0.00042 0.00019 0.00024 0.00025 0.00016 0.00005 0.00031 0.00042 0.00035
-0.03254 -0.01106 -0.01588 -0.01791 -0.01673 -0.01677 -0.02212 -0.02783 -0.02890
0.00079 0.00023 0.00038 0.00042 0.00042 0.00017 0.00051 0.00066 0.00065
-0.01428 -0.00316 -0.00532 -0.00708 -0.00709 -0.00779 -0.00735 -0.01027 -0.01133
0.00084 0.00030 0.00045 0.00056 0.00051 0.00037 0.00065 0.00077 0.00075

BC3b_LC1 BC3b_LC2_A1 BC3b_LC2_A2 BC3b_LC2_A3 BC3b_LC2_A4 BC3b_LC2_A5 BC3b_LC3_A1 BC3b_LC3_A2 BC3b_LC3_A3
-0.06770 -0.04867 -0.04165 -0.03332 -0.01918 -0.01323 -0.07127 -0.05966 -0.04237
-0.00080 -0.00009 -0.00040 -0.00056 -0.00052 -0.00049 -0.00033 -0.00091 -0.00086
-0.08443 -0.05157 -0.04785 -0.04289 -0.03545 -0.02269 -0.07905 -0.07338 -0.05955
-0.00075 0.00002 -0.00028 -0.00044 -0.00051 -0.00049 -0.00030 -0.00058 -0.00075
-0.09786 -0.04783 -0.05283 -0.05140 -0.04355 -0.03213 -0.08888 -0.08467 -0.07353
-0.00043 0.00019 -0.00002 -0.00019 -0.00037 -0.00037 0.00002 -0.00014 -0.00042
-0.10108 -0.04304 -0.05104 -0.05493 -0.04802 -0.04197 -0.07683 -0.08652 -0.07931
-0.00003 0.00033 0.00019 0.00003 -0.00019 -0.00033 0.00040 0.00012 -0.00019
-0.09940 -0.03453 -0.04594 -0.05269 -0.05376 -0.04699 -0.06444 -0.08210 -0.08598
0.00039 0.00040 0.00040 0.00031 0.00003 -0.00019 0.00052 0.00061 0.00028
-0.08283 -0.02354 -0.03603 -0.04334 -0.04923 -0.05209 -0.04888 -0.06314 -0.07349
0.00078 0.00047 0.00047 0.00040 0.00028 0.00003 0.00075 0.00063 0.00045
-0.06369 -0.01594 -0.02506 -0.03367 -0.04235 -0.04974 -0.03278 -0.04914 -0.06090
0.00083 0.00049 0.00049 0.00042 0.00038 0.00003 0.00089 0.00066 0.00052

LC1 LC2

STEP 1 Experimental Measurement Data (Listed according to boundary condition (BC) and load case (LC):

LC3

BC3b LC1 LC2 LC3

BC3a

The purpose of this spreadsheet is to perform Parameter Estimation of a test structure using Excel's built-in SOLVER tool to minimize a given objective function for a non-linear 
optimization problem, described below. Experimental measurement data will be 

An experimental test structure consisting of a 12 foot steel I-beam (W8x13 section) is simply supported by two steel sawhorses. A variety of boundary conditions were tested using steel angles and Neoprene pads to compare stiff and reduced stiffness suppor

BC1 LC1 LC2 LC3

The following steps serve as a guide for performing Parameter Estimation on a test beam structure, utilizing experimental measurements:PROCEDURE:

Spreadsheet Parameter Estimation (SPE)
Developed by Kevin Francoforte M.S.C.E. 2007

Revision Date: 3/07

13
14

k1 k2

1 
2

1 

5
6

9
10

3 
4

7
8

11 
12

2 2 3 4 5 6 3 4 5 6
71 
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BC5b_LC1 BC5b_LC2_A1 BC5b_LC2_A2 BC5b_LC2_A3 BC5b_LC2_A4 BC5b_LC2_A5 BC5b_LC3_A1 BC5b_LC3_A2 BC5b_LC3_A3
-0.08899 -0.06004 -0.04802 -0.03818 -0.02662 -0.01072 -0.08560 -0.06877 -0.04705
-0.00028 -0.00017 -0.00012 -0.00019 -0.00021 -0.00021 -0.00017 -0.00037 -0.00040
-0.09357 -0.05601 -0.05033 -0.04254 -0.03013 -0.01489 -0.08295 -0.07160 -0.05317
-0.00019 0.00024 -0.00005 -0.00016 -0.00012 -0.00012 0.00000 -0.00021 -0.00031
-0.09352 -0.04819 -0.04962 -0.04390 -0.03320 -0.01547 -0.07639 -0.07282 -0.05961
0.00009 0.00045 0.00017 -0.00003 -0.00009 -0.00010 0.00033 0.00009 -0.00009
-0.08998 -0.03663 -0.03824 -0.03735 -0.03098 -0.01856 -0.06242 -0.06544 -0.05762
0.00054 0.00051 0.00042 0.00023 0.00007 0.00002 0.00051 0.00038 0.00017
-0.07440 -0.02937 -0.03329 -0.03489 -0.03023 -0.01922 -0.05038 -0.05625 -0.05340
0.00063 0.00051 0.00058 0.00045 0.00033 0.00012 0.00094 0.00084 0.00063
-0.04602 -0.01356 -0.01356 -0.01605 -0.01499 -0.01142 -0.02212 -0.02890 -0.02961
0.00110 0.00052 0.00062 0.00067 0.00054 0.00023 0.00101 0.00106 0.00091
-0.02271 -0.00035 -0.00200 -0.00381 -0.00480 -0.00577 -0.00311 -0.00791 -0.01164
0.00152 0.00070 0.00072 0.00075 0.00066 0.00033 0.00105 0.00112 0.00096

LC1 LC2_A1 LC2_A2 LC2_A3 LC2_A4 LC2_A5 LC3_A1 LC3_A2 LC3_A3
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 -0.416 0 0 0 0 -0.314 0 0
0 0 0 0 0 0 0 0 0

-0.41554 0 -0.416 0 0 0 -0.314 -0.314 0
0 0 0 0 0 0 0 0 0
0 0 0 -0.416 0 0 -0.076 -0.314 -0.314
0 0 0 0 0 0 0 0 0

-0.41593 0 0 0 -0.416 0 0 -0.076 -0.314
0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0.416 0 0 -0.076
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

BC3a_LC1 Global DOF LC1 Global DOF
-0.01780 1 -8.17364E-07 0 1
-0.00082 2 -0.000831476 0 2
-0.02983 3 -0.019124254 0 3
-0.00077 4 -0.000727578 0 4
-0.05024 5 -0.03326008 -0.41554 5
-0.00040 6 -0.000415793 0 6
-0.05258 7 -0.038250068 0 7
0.00007 8 -7.73389E-08 0 8
-0.04780 9 -0.03326327 -0.41593 9
0.00042 10 0.000415703 0 10
-0.03254 11 -0.019128287 0 11
0.00079 12 0.000727587 0 12
-0.01428 13 -4.12939E-06 0 13
0.00084 14 0.000831516 0 14

Spring # Stiffness Units

K1 505050.00 kip/in

K2 100000.00 kip/in

1 2 3 4 5 6 7 8 9 10 11 12 13 14 DOF
506046.875 11963 -996.88 11963 0 0 0 0 0 0 0 0 0 0 1

11963 191400 -11963 95700 0 0 0 0 0 0 0 0 0 0 2
-996.88 -11963 1993.8 0 -996.88 11963 0 0 0 0 0 0 0 0 3
11963 95700 0 382800 -11963 95700 0 0 0 0 0 0 0 0 4

0 0 -996.88 -11963 1993.8 0 -996.88 11963 0 0 0 0 0 0 5
0 0 11963 95700 0 382800 -11963 95700 0 0 0 0 0 0 6
0 0 0 0 -996.88 -11963 1993.8 0 -996.88 11963 0 0 0 0 7
0 0 0 0 11963 95700 0 382800 -11963 95700 0 0 0 0 8
0 0 0 0 0 0 -996.88 -11963 1993.8 0 -996.88 11963 0 0 9
0 0 0 0 0 0 11963 95700 0 382800 -11963 95700 0 0 10
0 0 0 0 0 0 0 0 -996.88 -11963 1993.8 0 -996.88 11963 11
0 0 0 0 0 0 0 0 11963 95700 0 382800 -11963 95700 12
0 0 0 0 0 0 0 0 0 0 -996.88 -11963 100996.875 -11963 13
0 0 0 0 0 0 0 0 0 0 11963 95700 -11963 191400 14

LC3

STEP 2 Experimental Load Case Data (Load cases used to collect measurement data):

Exp. 
LCs

LC1 LC2 LC3

BC5b LC1 LC2

{F}e{U}e

STEP 4 Input the initial or best "guess" values for the unknown boundary condition springs (These are the "adjustable" cells for Solver):

Enter (copy, paste) the experimental MEASUREMENT (Ue) & FORCE (Fe) vector you want to use in the following spaces:

Note: Once Solver optimizes the "TARGET CELL" (or objective function), these cells will 
represent the UPDATED stiffness variables

[K]i

STEP 3

STEP 5 This is the global stiffness matrix for the test beam structure. Cells K22 and K1313 will be updated to reflect the change in the boundary condition vertical stiffness:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 Old New
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3
0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 4
0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 5
0 0 0 1 0 0 0 0 0 0 0 0 0 0 5 6
0 0 0 0 1 0 0 0 0 0 0 0 0 0 6 7
0 0 0 0 0 1 0 0 0 0 0 0 0 0 7 8
0 0 0 0 0 0 1 0 0 0 0 0 0 0 8 9
0 0 0 0 0 0 0 1 0 0 0 0 0 0 9 10
0 0 0 0 0 0 0 0 1 0 0 0 0 0 10 11
0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 12
0 0 0 0 0 0 0 0 0 0 1 0 0 0 12 14
0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 13

Global DOF Units Global DOF Units
-0.0008203 2 radians 0 2
-0.02983 3 in 0 3 kip

-0.0007679 4 radians 0 4
-0.05024 5 in -0.41554 5 kip

-0.0004014 6 radians 0 6
-0.05258 7 in 0 7 kip

0.0000698 8 radians 0 8
-0.0478 9 in -0.41593 9 kip

0.0004189 10 radians 0 10
-0.03254 11 in 0 11 kip

0.0007854 12 radians 0 12
0.0008403 14 radians 0 14

0 1 0 1
0 13 0 13

11963 191400.00 -11963.00 95700 0.00 0 0 0.00 0.00 0 0 0 0 0.00
-997 -11963.00 1993.80 0 -997 11963.00 0 0.00 0.00 0 0 0 0 0.00

11963 95700 0 382800 -11963.00 95700.00 0 0.00 0 0 0.00 0.00 0 0.00
0 0 -997 -11963 1994 0 -997 11963.00 0.00 0 0.00 0 0 0.00
0 0 11963 95700 0 382800 -11963 95700 0 0 0.00 0.00 0 0.00
0 0 0 0 -997 -11963 1994 0 -997 11963 0.00 0.00 0 0.00

0.00 0 0 0.00 11963 95700 0 382800 -11963 95700 0 0 0 0.00
0 0.00 0.00 0 0.00 0.00 -997 -11963 1994 0 -997 11963 0 0.00
0 0.00 0.00 0 0.00 0.00 11963 95700 0 382800 -11963 95700 0 0.00

0.00 0 0 0.00 0 0 0.00 0 -997 -11963 1994 0 -997 11963.00
0 0 0 0.00 0 0 0.00 0 11963 95700.00 0 382800 -11963 95700.00
0 0 0 0 0.00 0.00 0 0 0.00 0 11963.00 95700.00 -11963 191400.00

506047 11963 -997 11963 0 0 0.00 0 0 0.00 0 0 0.00 0.00
0 0 0 0 0 0 0 0.00 0.00 0 -997 -11963.00 100997 -11963.00

Kaa Kab

Kba Kbb

2 3 4 5 6 7 8 9 10 11 12 14 1 13 DOF
191400 -11963 95700 0 0 0 0 0 0 0 0 0 11963 0 2
-11963 1993.8 0 -996.88 11963 0 0 0 0 0 0 0 -996.88 0 3
95700 0 382800 -11963 95700 0 0 0 0 0 0 0 11963 0 4

0 -996.88 -11963 1993.8 0 -996.88 11963 0 0 0 0 0 0 0 5
0 11963 95700 0 382800 -11963 95700 0 0 0 0 0 0 0 6
0 0 0 -996.88 -11963 1993.8 0 -996.88 11963 0 0 0 0 0 7
0 0 0 11963 95700 0 382800.0 -11963 95700 0.0 0 0 0 0 8
0 0 0 0 0 -996.88 -11963 1993.8 0.0 -996.88 11963 0 0 0 9
0 0 0 0 0 11963 95700 0.0 382800.0 -11963 95700 0 0 0 10
0 0 0 0 0 0 0.0 -996.88 -11963 1993.8 0.0 11963 0 -996.88 11
0 0 0 0 0 0 0 11963 95700 0.0 382800.0 95700 0.0 -11963 12
0 0 0 0 0 0 0 0 0 11963 95700 191400.0 0 -11963.0 14

11963 -996.88 11963 0 0 0 0 0 0 0 0.0 0 506046.9 0 1
0 0 0 0 0 0 0 0 0 -996.88 -11963 -11963.0 0 100996.9 13

1.9761E-06 0
0 9.9013E-06

The following transform [T] matrix partitions ("rearrange") [K]i according to "known" & "unknown" DOF (i.e. "measured" and "unmeasured" DOF):STEP 6

STEP 7 Rearrange the EXPERIMENTAL displacement and force vectors as well:

STEP 8 The following matrix is used as part of the calculation to determine the INITIAL transformed matrix:

STEP 9 The following matrix is the "INITIAL" transformed matrix as calculated by Excel:

STEP 10 Using Excel's matrix calculations, the global INITIAL stiffness matrix will be condensed to the "KNOWN" DOF:

[KT]i =

[KT]i

STEP 10A Excel will now calculate the inverse of sub-matrix [Kbb
i]:

[Kbb
i]-1

{Up}e {Fp}e

[T]
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0.023640103 0.0000
-0.001969936 0.0000
0.023640103 0.0000

0 0.0000
0 0.0000
0 0.0000
0 0.0000
0 0.0000
0 0.0000
0 -0.0099
0 -0.1184
0 -0.118449209

282.81 -23.57 282.81 0.00 0.00 0 0.00 0 0 0 0 0
-23.57 1.96 -23.57 0.00 0.00 0 0.00 0 0 0 0 0
282.81 -23.57 282.81 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 0 0 0
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 9.839608744 118.0796479 118.0796479
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 118.0796479 1417.007893 1417.007893
0.00 0.00 0.00 0.00 0.00 0 0.00 0 0 118.0796479 1417.007893 1417.007893

191117.19 -11939.43 95417.19 0.00 0.00 0 0.00 0 0 0 0 0
-11939.43 1991.84 23.57 -996.88 11963.00 0 0.00 0 0 0 0 0
95417.19 23.57 382517.19 -11963.00 95700.00 0 0.00 0 0 0 0 0

0.00 -996.88 -11963.00 1993.80 0.00 -996.88 11963.00 0 0 0 0 0
0.00 11963.00 95700.00 0.00 382800.00 -11963 95700.00 0 0 0 0 0
0.00 0.00 0.00 -996.88 -11963.00 1993.8 0.00 -996.88 11963 0 0 0
0.00 0.00 0.00 11963.00 95700.00 0 382800.00 -11963 95700 0 0 0
0.00 0.00 0.00 0.00 0.00 -996.88 -11963.00 1993.8 0 -996.88 11963 0
0.00 0.00 0.00 0.00 0.00 11963 95700.00 0 382800 -11963 95700 0
0.00 0.00 0.00 0.00 0.00 0 0.00 -996.88 -11963 1983.960391 -118.0796479 11844.92035
0.00 0.00 0.00 0.00 0.00 0 0.00 11963 95700 -118.0796479 381382.9921 94282.99211

0 0 0 0.0000 0.0000 0 0 0 0 11844.92035 94282.99211 189982.9921

0.0000 0.0008 0.0000 0.0011 0.0000 0.0011 0.0000 0.0009 0.0000 0.0005 0.0000 0.0000
0.0008 0.0167 0.0006 0.0253 0.0002 0.0260 -0.0001 0.0207 -0.0003 0.0113 -0.0004 -0.0005
0.0000 0.0006 0.0000 0.0009 0.0000 0.0010 0.0000 0.0008 0.0000 0.0004 0.0000 0.0000
0.0011 0.0253 0.0009 0.0427 0.0004 0.0460 -0.0001 0.0373 -0.0006 0.0207 -0.0008 -0.0009
0.0000 0.0002 0.0000 0.0004 0.0000 0.0006 0.0000 0.0006 0.0000 0.0003 0.0000 0.0000
0.0011 0.0260 0.0010 0.0460 0.0006 0.0540 0.0000 0.0460 -0.0006 0.0260 -0.0010 -0.0011
0.0000 -0.0001 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000
0.0009 0.0207 0.0008 0.0373 0.0006 0.0460 0.0001 0.0427 -0.0004 0.0253 -0.0009 -0.0011
0.0000 -0.0003 0.0000 -0.0006 0.0000 -0.0006 0.0000 -0.0004 0.0000 -0.0002 0.0000 0.0000
0.0005 0.0113 0.0004 0.0207 0.0003 0.0260 0.0001 0.0253 -0.0002 0.0167 -0.0006 -0.0008
0.0000 -0.0004 0.0000 -0.0008 0.0000 -0.0010 0.0000 -0.0009 0.0000 -0.0006 0.0000 0.0000
0.0000 -0.0005 0.0000 -0.0009 0.0000 -0.0011 0.0000 -0.0011 0.0000 -0.0008 0.0000 0.0000

-0.000831476
-0.019124254
-0.000727578
-0.03326008

-0.000415793
-0.038250068
-7.73389E-08
-0.03326327
0.000415703
-0.019128287
0.000727587
0.000831516

STEP 10B Excel will now multiply sub-matrix [Kbb
i]-1 with sub-matrix [Kab]i:

STEP 10C

STEP 10D

STEP 10E

STEP 11 Excel will now solve for the ANALYTICALLY determined measurements by multiplying the previous matrix (STEP 10E) by {Fp}e:

Excel will now subtract the result of [Kab]i x [Kbb
i]-1 x [Kba]i from sub matrix [Kaa]i:

Excel will now calculate the inverse of [Kaa]i - [Kab]i x [Kbb
i]-1 x [Kba]i:

([Kaa]i- [Kab]i[Kbb
i]-1[Kba]i )-1

{Up}i = ([Kaa]i- [Kab]i[Kbb
i]-1[Kba]i){Fp}e

[Kab]i[Kbb
i]-1

[Kab]i[Kbb
i]-1[Kba]i

[Kaa]i- [Kab]i[Kbb
i]-1[Kba]i 

Excel will now multiply sub-matrices [Kab]i and [Kbb
i]-1 with sub-matrix [Kba]i:
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KNOWN DOF Units
-0.00083 -0.00082 -0.00001 2 radians
-0.01912 -0.02983 0.010705746 3 in
-0.00073 -0.00077 4.03217E-05 4 radians
-0.03326 -0.05024 0.01697992 5 in
-0.00042 -0.00040 -1.43928E-05 6 radians
-0.03825 -0.05258 0.014329932 7 in
0.00000 0.00007 -6.98773E-05 8 radians
-0.03326 -0.04780 0.01453673 9 in
0.00042 0.00042 -3.19672E-06 10 radians
-0.01913 -0.03254 0.013411713 11 in
0.00073 0.00079 -5.78133E-05 12 radians
0.00083 0.00084 -8.78351E-06 14 radians

0.00099948

Spring # BC1_LC1 BC1_LC2_A1 BC1_LC2_A2 BC1_LC2_A3 BC1_LC2_A4 BC1_LC2_A5 BC1_LC3_A1 BC1_LC3_A2 BC1_LC3_A3

K1
u 42.97 88.99 54.83 45.00 39.79 32.48 68.18 58.15 45.70

K2
u 46.03 43.34 45.65 81.48 92.11 63.42 124.56 108.51 104.92

Spring # BC3a_LC1 BC3a_LC2_A1 BC3a_LC2_A2 BC3a_LC2_A3 BC3a_LC2_A4 BC3a_LC2_A5 BC3a_LC3_A1 BC3a_LC3_A2 BC3a_LC3_A3

K1
u 31.20 32.91 22.30 24.61 22.37 20.61 28.18 26.86 18.28

K2
u 27.50 14.82 26.16 23.00 36.44 35.70 18.66 24.37 40.78

Spring # BC3b_LC1 BC3b_LC2_A1 BC3b_LC2_A2 BC3b_LC2_A3 BC3b_LC2_A4 BC3b_LC2_A5 BC3b_LC3_A1 BC3b_LC3_A2 BC3b_LC3_A3

K1
u 6.22 6.74 6.83 6.33 5.99 6.03 6.75 6.59 6.75

K2
u 6.32 5.00 5.30 6.08 6.60 6.70 6.43 6.55 7.01

Spring # BC5b_LC1 BC5b_LC2_A1 BC5b_LC2_A2 BC5b_LC2_A3 BC5b_LC2_A4 BC5b_LC2_A5 BC5b_LC3_A1 BC5b_LC3_A2 BC5b_LC3_A3

K1
u 4.78 5.34 6.45 6.14 6.15

K2
u 24.11 147.55 72.50 80.67 50.93BC5b

BC3b

BC3a

BC1

STEP 12

{E}{Up}e =

Use the SOLVER tool to minimize the objective function:

STEP 13

UPDATED

=

UPDATED

Record the "INITIAL" and "UPDATED" values for the unknown springs in the following tables (according to BC, LC):

{Up}i -

-

Analytically 
determined 

measurements

UPDATED

Error Function Equation

Minimize this cell   ("Target Cell")

UPDATED

Set the "TARGET CELL", which is the square root of the sum of the squares, from {E}:

Experimentally 
determined 

measurements
Difference (error)
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CR10X Master Connection Table 

 

AM16/32 Multiplexer Wiring Diagram 
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