You are here
HIGH BIREFRINGENCE LIQUID CRYSTALS FOR OPTICAL COMMUNICATIONS
- Date Issued:
- 2007
- Abstract/Description:
- High birefringence (n>0.4) nematic liquid crystals are particularly attractive for infrared applications because they enable a thinner cell gap to be used for achieving fast response time and improved diffraction efficiency. In this thesis, the mesomorphic and electro-optic properties of several new fluorinated isothiocyanate (NCS) terphenyl and phenyl tolane single compounds and mixtures are reported. The single compounds demonstrated n~0.35-0.52 in the visible spectral region at room temperature and exhibit relatively low viscosity. It was found that lateral fluorine substitutions and short alkyl chains eliminate smectic phase and lower the melting temperature of the single compounds. However, the consequence of using highly conjugated compounds to improve electro-optic properties is that the nematic phase is exhibited at high temperatures, over 100C, and therefore single compounds cannot be used for device applications. Therefore, several mixtures based on the terphenyl and phenyl-tolane compounds were formulated and evaluated. The purpose of mixtures is to find the optimum balance between electro-optic performance and the mesomorphic properties that determine the operating temperature range. It was found that mixture formulations greatly improved mesomorphic properties to produce nematic phase at or near room temperature and suppressed smectic phase to below 0C or eliminating completely. The analysis presented evaluates the benefits of lowering the operating temperature versus the consequence of degrading the electro-optic properties.
Title: | HIGH BIREFRINGENCE LIQUID CRYSTALS FOR OPTICAL COMMUNICATIONS. |
32 views
16 downloads |
---|---|---|
Name(s): |
Parish, Amanda, Author Wu, Shin-Tson, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2007 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | High birefringence (n>0.4) nematic liquid crystals are particularly attractive for infrared applications because they enable a thinner cell gap to be used for achieving fast response time and improved diffraction efficiency. In this thesis, the mesomorphic and electro-optic properties of several new fluorinated isothiocyanate (NCS) terphenyl and phenyl tolane single compounds and mixtures are reported. The single compounds demonstrated n~0.35-0.52 in the visible spectral region at room temperature and exhibit relatively low viscosity. It was found that lateral fluorine substitutions and short alkyl chains eliminate smectic phase and lower the melting temperature of the single compounds. However, the consequence of using highly conjugated compounds to improve electro-optic properties is that the nematic phase is exhibited at high temperatures, over 100C, and therefore single compounds cannot be used for device applications. Therefore, several mixtures based on the terphenyl and phenyl-tolane compounds were formulated and evaluated. The purpose of mixtures is to find the optimum balance between electro-optic performance and the mesomorphic properties that determine the operating temperature range. It was found that mixture formulations greatly improved mesomorphic properties to produce nematic phase at or near room temperature and suppressed smectic phase to below 0C or eliminating completely. The analysis presented evaluates the benefits of lowering the operating temperature versus the consequence of degrading the electro-optic properties. | |
Identifier: | CFE0001882 (IID), ucf:47397 (fedora) | |
Note(s): |
2007-12-01 M.S. Optics and Photonics, College of Optics and Photonics Masters This record was generated from author submitted information. |
|
Subject(s): |
Terphenyl liquid crystals Phenyl-Tolane liquid crystals high birefringence |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0001882 | |
Restrictions on Access: | public | |
Host Institution: | UCF |