You are here

HYBRID PHOTONIC SIGNAL PROCESSING

Download pdf | Full Screen View

Date Issued:
2007
Abstract/Description:
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space--fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Title: HYBRID PHOTONIC SIGNAL PROCESSING.
30 views
5 downloads
Name(s): Ghauri, Farzan, Author
Riza, Nabeel, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2007
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space--fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Identifier: CFE0001983 (IID), ucf:47423 (fedora)
Note(s): 2007-12-01
Ph.D.
Optics and Photonics, College of Optics and Photonics
Doctorate
This record was generated from author submitted information.
Subject(s): Photonic Signal Processing
Microwave Photonics
Optical Sensors
Variable Optical Attenuators
Laser Beam Profiler
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001983
Restrictions on Access: public
Host Institution: UCF

In Collections