You are here

ANCHORING ENERGY AND PRETILT ANGLE EFFECTS ON LIQUID CRYSTAL RESPONSE TIME

Download pdf | Full Screen View

Date Issued:
2007
Abstract/Description:
This dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical analyses and confirming experimental results are presented. Vertically-aligned liquid crystal cells with buffed polyimide alignment layers are used to validate the measurement techniques. Based on the voltage-dependent transmittance of the liquid crystal cells, a linear fitting can be obtained, which leads to a precise determination of the anchoring energy. If some specific liquid crystal material parameters are known, then the traditional cell capacitance measurements can be avoided. Anchoring energy and cell gap effects on liquid crystal response time is theoretically analyzed and experimentally investigated. A novel theory on the liquid crystal dynamics is developed. In this part, two different theoretical approaches are discussed: one is surface dynamic equation method and the other is effective cell gap method. These two different approaches lead to consistent results, which are also confirmed by our experimental results. This work opens a new door for LCD industry to optimize liquid crystal response time, and it is especially critical for liquid crystal cells with thin cell gap, which is a promising approach for fast response time liquid crystal display. Pretilt angle effects on liquid crystal dynamics are analyzed theoretically and validated experimentally. Analytical expressions are derived to describe liquid crystal response time under nonzero pretilt angle conditions. The theoretical analysis is confirmed experimentally using vertically-aligned liquid crystal cells. These results quantitatively correlate pretilt angles with liquid crystal response time, which is important for optimizing liquid crystal response time.
Title: ANCHORING ENERGY AND PRETILT ANGLE EFFECTS ON LIQUID CRYSTAL RESPONSE TIME.
78 views
28 downloads
Name(s): Nie, Xiangyi, Author
Wu, Shin-Tson, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2007
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical analyses and confirming experimental results are presented. Vertically-aligned liquid crystal cells with buffed polyimide alignment layers are used to validate the measurement techniques. Based on the voltage-dependent transmittance of the liquid crystal cells, a linear fitting can be obtained, which leads to a precise determination of the anchoring energy. If some specific liquid crystal material parameters are known, then the traditional cell capacitance measurements can be avoided. Anchoring energy and cell gap effects on liquid crystal response time is theoretically analyzed and experimentally investigated. A novel theory on the liquid crystal dynamics is developed. In this part, two different theoretical approaches are discussed: one is surface dynamic equation method and the other is effective cell gap method. These two different approaches lead to consistent results, which are also confirmed by our experimental results. This work opens a new door for LCD industry to optimize liquid crystal response time, and it is especially critical for liquid crystal cells with thin cell gap, which is a promising approach for fast response time liquid crystal display. Pretilt angle effects on liquid crystal dynamics are analyzed theoretically and validated experimentally. Analytical expressions are derived to describe liquid crystal response time under nonzero pretilt angle conditions. The theoretical analysis is confirmed experimentally using vertically-aligned liquid crystal cells. These results quantitatively correlate pretilt angles with liquid crystal response time, which is important for optimizing liquid crystal response time.
Identifier: CFE0001927 (IID), ucf:47440 (fedora)
Note(s): 2007-12-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): Liquid Crystal
Response Time
Anchoring Energy
Pretilt Angle
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0001927
Restrictions on Access: private 2007-11-01
Host Institution: UCF

In Collections