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ABSTRACT

Detecting curved objects against cluttered backgroundshiard problem in computer vi-
sion. We present new low-level and mid-level features tacfiam in these environments.
The low-level features are fast to compute, because theyogngm integral image ap-
proach, which makes them especially useful in real-timdiegions. The mid-level fea-
tures are built from low-level features, and are optimizexddurved object detection.

The usefulness of these features is tested by designingect dletection algorithm us-
ing these features. Object detection is accomplished bgfoaming the mid-level features
into weak classi ers, which then produce a strong classusing AdaBoost. The resulting
strong classi er is then tested on the problem of detectiegds with shoulders.

On a database of over 500 images of people, cropped to camaith and shoulders,
and with a diverse set of backgrounds, the detection rat@% @hile the false positive

rate on a database of 500 negative images is less than 2%.
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1. INTRODUCTION

Object detection is a fundamental problem in Computer Vis®iven an image or a frame
of a video sequence, a computer needs to identify what abgeetin it, and their locations.
As we have learned over the last several decades of workathgs very dif cult to do for

a machine. Yet, humans can do this task very easily, and asty fecognizing hundreds

of objects every day. What makes this problem dif cult?

Large intra-class variationDetecting one instance of an object class is easy, but gseles

for the real world. Take cars for example. In an automotison system that is designed
to signal the activation of brakes in dangerous situatibes)g able to detect a blue 2008
Ford Focus will not help when a silver 2006 Toyota Camry appedead. Therefore,
the intra-class variation is a signi cant concern for anyeab detection algorithm. The
variation in appearance can be large (Volkswagen New BestleHummer). In the car
industry, there are hundreds of car manufacturers, eactiupimog several models every
year, and each available in many colors. However, therenge#iting in common between
all these cars. Identifying this “something,” a patternd guantifying it is the essence of
object detection.

Viewpoint changesMost objects look very different when they are rotated, @lsd
by a large factor. They look different enough to be considerdifferent object. However,
considering each view and scale as a separate object isnadfrgient. Therefore, a robust
object detection algorithm must keep this in mind.

Occlusion. An object may not be fully visible, but if it provides enouglues that a

human can identify it, an object detection algorithm needdentify it as well. In general,



this means that the algorithm can not have only one way ofirsplthe task. When one
attempt fails, it needs to be able to recover from it, anchatito solve the problem another
way. In object detection, this translates to using multgidgect properties, or features, that
can be independently calculated on different parts of theabb

lllumination changes.Color, brightness, and shading of an object all change under
different illuminations. One way a good object detectiogoaithm minimizes the effect of
illumination changes is by using gradient information eatthan the raw intensity or color.
This achieves invariance with respect to linear changeduimination. Nonlinear changes
in illumination, however, are more dif cult to solve.

Dynamic object structuréArticulate objects are objects that have a dynamic strectur
as opposed to rigid objects. This includes hands, humamsaaimals. These objects
look different even if the above variables are constant. éxample, a hand with a closed
st looks different when the same hand is open under the saavepoint and illumination.
Detecting articulate objects requires much more effomtihetecting rigid objects like cars.

Sensor noise.The last, but not least, problem is noise, and the qualitynplif to
the algorithm. Noisy data, or low image contrast, can sigantly affect calculations.
Image pre-processing, such as smoothing, can help abetriest problem. Still, an object
detection algorithm should not impose xed thresholds ia ttalculations, which cause
chaotic performance. Rather, it should gracefully hankiéefailure of any one part of the
calculation.

Given all these issues, it is clear that object detectioh&lenging. Solving one prob-
lem, such as intra-class variation, usually means pooopednce on the other problems.
However, each step brings us closer to the ultimate goakhwisiwhat matters the most.

In this work, a step is taken in solving the problem of curvbgeot detection. New low-
level and mid-level features are introduced, which do ndfiesdrom background clutter

problem. The low-level features are fast to compute, whietkes them especially useful



in real-time applications. The mid-level features are tbindm low-level features, and
are optimized for curved objects. The usefulness of thestelfes is tested by designing an
object detection algorithm. Object detection is acconmgltsby transforming the mid-level
features into weak classi ers, paving the way for boostirggrang classi er. The resulting
strong classi er is then tested on the problem of head andlsleos detection.

In the next section, previous work in feature detection dnjdat detection is discussed.
In Section 1.1.3 the AdaBoost algorithm is reviewed, asalplan important role in the
design of the object detection algorithm used in this worke Tiext chapter describes in
detail the contributions made by this thesis: low-levetdeas, codebook of these features,
and mid-level features. It also describes an object detectigorithm using these features.
The following chapter presents the experimental setupdstirig the performance of the
features and the results achieved. Finally, this thesibosed by discussion of the results,

future work, and conclusions.

1.1 Previous Work

Given the fundamental nature of the object detection prabiéis not surprising to see
an extensive work on all aspects of the subject. An imporapect of many object de-
tection algorithms is image features. There are many apgpexto the feature detection,
and feature descriptor problem. The most important of tla@seeviewed in the next sub-
section. Subsequently, previous work in object detecsafiscussed, with one subsection

dedicated to AdaBoost, which is used as an object detedgamigom in this thesis.

1.1.1 Image Features

Image features play an important role in many areas of coempision, including corre-
spondence problem, object tracking, and object detecftidns importance is evident in

the number of works on this issue in the literature. Sincepttaetical application of this



thesis is in object detection, the focus is on works withudezd used in object detection.
But rst, what are image features, and what is their role ifegbdetection?

A feature is a quantity, usually in high-dimensional spalcat captures some character-
istic of an object. These characteristics can be explid#iyed, such as color or brightness
gradient, but usually they are implicitly found by a patteznognition technique. The types
of features that can capture this information include watvebef cients, histograms of ori-
ented gradients, and many others. The goal in object deteistto nd a pattern of feature
instances in a training set that reliably represent theatbjehen the object is detected in
an unseen image when this pattern of feature instancessppea

The design of an image feature is divided into a feature ¢ietealgorithm, and a fea-
ture descriptor algorithm. A feature detection algorithuiputs a list of interest points in
an image, then a feature descriptor algorithm takes eachamecalculates the feature de-
scriptor from a small image patch around it. Using a featwtector is necessary, because
calculating feature descriptors for every patch in the iemaguld not only be computa-
tionally inef cient, but would give a lot of useless informan. The best features are ones
that occur often and consistently in the same place on thecbbj

The rst signi cant feature detection algorithm is the Haricorner detector [HS88].
For each pixel, it calculates a second moment matrix, whielasuares the gradient distri-
bution in a local neighborhood. The “cornerness” is thenral as the determinant minus
the trace squared. Local peaks in the “cornerness” indib&éocations of interest points.
Since the introduction of this detector, there have beenymariants proposed, including
Harris-Af ne [MS02], and Harris-Laplace [MS01], which asgale-invariant.

Another feature detection algorithm was introduced by Ldla@v04]. Here the in-
terest points are local 3D extrema in the difference of Ganspyramid. The extrema

determine the localization and the scale of the interestitpoiThe difference of Gaussian



pyramid is obtained by subtracting two adjacent Gaussiarrdd images, and it is a very
ef cient approximation of the Laplacian pyramid.

There have also been many feature descriptors develope@4M3Ihe rst, and the
simplest, descriptor used is a vector of raw pixel inteasiin a local image patch. Sim-
ilarity between such descriptors is measured using nom@dlcross-correlation. This de-
scriptor, however, is not invariant to rotation, and thealiggior similarity calculation is not
ef cient.

Descriptors based on histograms have been shown to be vecgsaiul. The most
famous of these is the SIFT descriptor [Low04]. This degorigtores a distribution of
gradients in a local patch. The histogram quantizes gradieations and orientations.
Each histogram entry is weighted by gradient magnitudethmitiescriptor is normalized
to unit length to be invariant to linear illumination chasge

One problem with histogram based descriptors is their sgitgito background for
features points near the boundaries of an object. This doesatter for objects that are
mostly planar, such as books, cars, or boxes, but it is atsegoncern for articulate ob-
jects like hands, and humans, where the most importantriEsatccur on the boundary.
This problem is illustrated in Figure 1.1, where SIFT dgsttnis are used to recognize an
object. When the same object is moved to a different backgtothe number of matches
decreases considerably. This shows that the feature gemsrinclude background infor-
mation, which prevents a recognition of the object in vagylrckgrounds.

This problem was recognized by Mikolajczyk et al in [MZS03The solution pro-
posed there divides the local patch around an interest pamtwo parts, foreground and
a background. The division is along a chain of dominant edgksn, a SIFT descriptor is
calculated for each part separately. During matching, tineground pair of descriptors is
identi ed as the one with a minimum distance. One problemhwiiis algorithm is that it

is not computationally ef cient.



Figure 1.1: Object recognition using SIFT descriptors. Wtlee background changes, the
number of correct descriptor matches decreases signiygant
In this thesis, the descriptors for low-level features agsigned with this problem in
mind. The descriptors are histogram-based, however, ttedrams do not capture the
background information. Also, they are very ef cient to cpute. This will be discussed

in Section 2.2.

1.1.2 Object Detection

The number of existing object detection algorithms is larggch one performing really
well in some context. While the algorithms differ a lot in tetails, many of them use

image features at some point in the algorithm, and can bgaared into two approaches.

They are either single detection window based [POP98, SK001, DT05, SMQ7], or

part-based [MPPO1, FPZ03, LLS04, MSZ04, OPZ06]. Each ambrdas its advantages
and disadvantages. A detection window based approachesaljgroffer better detection
speed than part-based approaches, because there is neiedlgn object's structure.
Their only concern is to nd a pattern in a window. An objecttigen detected on a test

image by scanning all possible locations in the image. Pastd approaches, however,
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Figure 1.2: Selection of Haar wavelets used in object detect

offer more model exibility and thus capture more informatiin a compact representation.
This work is motivated by works across this spectrum, andbirtgmt algorithms from both
approaches will be reviewed.

A general approach to object detection was presented in 9BDHnN this work, an
object class is represented using an overcomplete set ofwiaeelets. Some of these are
illustrated in Figure 1.2. The value of each wavelet is aedéhce in average intensity
between different regions. The descriptor of a detectiomdaw contains these values for
many instances of these wavelets (different sizes anditosain the window). The dimen-
sionality of the descriptor is reduced to only contain theshpromising wavelets. This is
done by simple statistical analysis. A support vector maeksSVM) classi er is then used
with the reduced descriptors to discriminate between theablslass and background. The
method shows good results on face detection and pedesegiaatibn.

A statistical approach to object detection was demonstratg¢SKO0O0]. A probability
distribution of appearance is estimated for an object adassbackground, and classi ca-
tion is made using the likelihood ratio test. Appearance axleted as a product of class
conditional probabilities of several visual attributesich visual attribute is a histogram of
guantized wavelet coef cients at a particular locationhie tletection window. Wavelet co-
ef cients capture information in space, frequency, anaéotation. The histograms can be
calculated using AdaBoost [FS97] to minimize classi caterror. This method is not very
ef cient, but results on face detection and car detectioomsthat a large team of simple

wavelet coef cients can capture complex patterns. Thisisened in the next work.



The AdaBoost algorithm as an object detection tool was maa®tis by the landmark
work of Viola and Jones [VJ01]. Here Haar wavelets are usedesk classi ers. Ad-
aBoost selects the set of weak classi ers that minimizestassi cation error. The weak
classi ers are organized in a cascade to achieve real-taoe fletection. The speed of the
algorithm is possible thanks to a new auxiliary data stngtthe integral image, which
allows fast computation of wavelet coef cients. Given thgportance of AdaBoost, and its
use in this thesis, this algorithm will be more covered int®ec1.1.3. Improvements to
Viola and Jones' algorithm have been presented in [LM02, B}V@here additional types
of features were added to the feature pool. These are ratdadlike features, and edge
orientation histograms. These improvements illustrageittportance of good features in
AdaBoost.

Recently, a lot of work has been done on human detection [DZ¥&A06, SMO7].
Dalal and Triggs [DT05] showed that gradient orientatiostdgrams are very useful fea-
tures in this context. They trained an SVM classi er to distnate between such his-
tograms of human images and background images. This digoachieved state of the
art performance, while being quite ef cient. InterestipgZhu et al [ZYCAQ6] achieved
the same performance at a signi cantly larger detectioredpley using a larger variety
of histograms, and implementing the algorithm in a cascasidaBoost framework. The
currently best performance on human detection was achiey¢8MO07], with a two stage
AdaBoost classi er. In the rst stage, AdaBoost is used tontmne low-level features
(oriented gradient responses) into mid-level featureastets). In the second stage, these
mid-level features are combined into a strong classi ere Gektection speed, however, does
not match [ZYCAO06].

All of these approaches show that wavelet coef cients,dgstms, and AdaBoost are

powerful ingredients in a detection window based objectcksin algorithm. When mixed



correctly, state of the art performance is achieved. Ptesagork in part-based approaches
to object detection is reviewed next.

Part-based approaches try to model the object as a colheatiparts and relationships
between them. In [MPPO01], a human was modeled as having €, pdrich were manually
determined. Each part was represented as a set of Haar wawefecients. The result-
ing part detector was built using an SVM. Geometric constsaivere applied to detected
parts, before further processing. The parts were combinyestdring the raw output of
each SVM in a vector. After this, another SVM was trained ossthvectors. This nal
classi er learned what combinations of part detections ant@o an object detection. The
method was tested on human detection, and showed that ugpiagsabased approach is
advantageous in partially occluded scenes.

A more general algorithm was presented in [FPZ03], wherelgacb is modeled as
a constellation of parts. The number of parts is xed, but ithentity of parts is learned
automatically by the algorithm. Each part has appearaeta&tjve scale, and an occlusion
state. Part appearance, part scale, and object shape areddled as Gaussian densities.
The parameters of these densities for the object class inea¢sd using the expectation
maximization algorithm. The parameters for background esemated directly from a
training set. The classi cation decision is made in a Bagesnanner. This algorithm is
tested on a variety of objects, and achieves good perforenanc

An improvement over the previous algorithms was introduicefLLS04]. Here, the
identity as well as the number of parts is determined fronming. The parts are automat-
ically constructed using agglomerative clustering of im@atches as in [AR02]. This set
of parts is a codebook of local appearance. Each part in tthebmok then records possible
locations of the object centroid relative to it. This infation is then used during detection
to perform a generalized Hough transform and vote for thealgentroid. The maxima in

the voting space are found using Mean-Shift Mode Estimafitnis method achieves state



of the art performance on car detection (side view). Thedligatage of this algorithm is
that it requires a segmented training set.

A method similar to [LLS04] was presented in [OPZ06]. Thdatiénce is that the parts
are not average image patches, but boundary fragments®@drirom an edge map. Each
fragment stores possible locations of the centroid as bef@ecause a single boundary
fragment is not very discriminating, boundary fragments eombined to groups of two
or three to form weak classi ers. The response of a weak ci&ss a Chamfer distance
of each boundary fragment to an image. A strong classi ehentfound by AdaBoost.
During detection, as before, the weak classi ers vote fer lttcation of the centroid. The
presence of an object is indicated by a maximum in the votiags. Very good results are
achieved on the Caltech dataset without requiring a segederdining set.

It is clear that the AdaBoost algorithm is an invaluable tioobbject detection. It has
been successfully used with detection window based appesa@s well as parts-based
approaches. Since this algorithm is also used in this thiésssexplained in detail in the

next section.

1.1.3 AdaBoost

The AdaBoost algorithm [FS97] is based on the idea of usimgantof experts for making
a decision. An expert does not have to be a genius, and bectait¢he time. In fact,
the algorithm only requires that an expert is right at led$t%f the time. For this reason,
an expert is called a weak classi er. The purpose of AdaBmsd nd a team of weak
classi ers and combine their decisions in such a way thatréselting team decision is
correct every time. The team is then a strong classi er.

AdaBoost is a supervised approach, requiring a trainingvgbtpositive examples and
negative examples of input. Selecting the members of a tedane in an iterative fashion.

The key idea is the reweighting of training examples. Iflifjdhe weight of each training

10



example is set uniformly. The next member of the team is thakwaassi er that has

the lowest error on the weighted training set. As soon as amewber is selected, the
training examples are reweighted such that the weights okctly classi ed examples

are decreased. Each member is also assigned a weight thegamds to its error on the
training set. This loop continues until meeting some cogeece criterion. The algorithm
is illustrated in Figure 1.3.

One of the most important properties of AdaBoost, which wasgd by Freund and
Shapire [FS97], is that if each weak classi er is slightlyttiee than random, then the train-
ing error drops exponentially fast. They have also shown tihe decision by the nal
strong classi er is identical to the Bayes optimal decisiale.

Viola and Jones [VJ01] found a very useful transformatioMdaBoost, the cascade.
This small modi cation to the algorithm builds several stgoclassi ers in stages that
together have the equivalent performance as a single stlasgi er found by a non-
cascaded AdaBoost. The strong classi ers are arranged ipeliqe, with each strong
classi er deciding whether to let the input continue in thpgldine or not. Input that passes
through every strong classi er is classi ed as positive. 2ersely, any input that fails
at any strong classi er is classi ed as negative, and is rarisidered further by the sub-
sequent strong classi ers. This construction allows tressi cation process allocate re-
sources more ef ciently. Input that is clearly negativedaearly in the pipeline and uses
little computation cost, since the subsequent classi @dt see it. On the other hand,
input that is very dif cult to classify uses as much resowes possible, passing through
every classi er.

This method naturally requires that each strong classias & very high true positive
rate, such as 99%. The false positive rate does not have tetyelow, however. For

example, if the goal is to have an overall true positive rdt@086 and a false positive rate

11



e Given example images (21,¥1),--.,(Z,,yn) where y; = 0,1 for negative and
positive examples respectively.

e Initialize weights wy ; = ﬁ, %

the number of negatives and positives respectively.

for y; = 0,1 respectively, where m and [ are

e Fort=1,...,T:

1. Normalize the weights,
wy 4

Z?:l Wi j

so that w; is a probability distribution.

Wy —

2. For each feature, j, train a classifier hj which is restricted to using
a single feature. The error is evaluated with respect to wy, € =
2 wi |hj(z) — yil-

3. Choose the classifier, h,, with the lowest error ¢;.

4. Update the weights:

Wiy1,i = Wy, ik el_ei
where ¢; = 0 if example z; is classified correctly, ¢; = 1 otherwise, and

3!:‘5_‘

l—fg

e The final strong classifier is:

h(;?;‘) = { 1 ZTZIQEPLE(:‘:) Z %Z?ﬂ:l y

N 0 otherwise

where a; = log EIT

Figure 1.3: AdaBoost algorithm. This gure is courtesy ofJ®1].

of 0.10%, in a 10 stage cascade, each strong classi er nedus/e a true positive rate of

99% (099'° 0:90), but a false positive rate can be as high as 50800 0:001).
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2. METHODS

The general approach followed here is that of a typical dljetection algorithm. In the
training phase, a pattern of image features is found froraiaitrg set and in testing, image
features are matched to this pattern. The details of thisoagh, however, differ from the
object detection algorithms reviewed so far. The trainingge has three stages. In the rst
stage, low-level features are computed from raw trainingges. These low-level features
are designed to be stable and not suffer from problems camséadckground clutter. In
the second stage, mid-level features are built from thelewe! features. The mid-level
features are optimized for curved object detection and s@ichinative enough to be used
as weak classi ers. In the nal stage, the mid-level featuege combined into a strong
classi er using AdaBoost.

Each stage of the algorithm is explained in the followingtieers. The low-level fea-
tures, curves, are introduced rst. In order to build the Aedel features, a codebook of
curves needs to be constructed. This process is explaimeddeSubsequently, the mid-
level features, triplets of curves, are introduced. Thel stage of the algorithm, boosting

of triplets as weak classi ers, closes this chapter.

2.1 Feature Detector

The low-level features used in this work are curves in migtipcales. These naturally
describe an object's structure. An object can be thoughisdi&ing composed of many
points, or lines, but neither of these is general enoughdwige a compact representation.

In addition, curves can be found consistently, becauseghtecof a curve is a point with a

13



high gradient magnitude. This high-frequency contentablet across images. Also, since
curves naturally partition the object's structure, they ¢ave a high-level meaning and
describe the object's parts.

In order to achieve high detection speed, the feature didrastage must be fast. Since
this is the rst stage, it determines the algorithm's speiedtl A fast detection of curves
is accomplished by creating a convolution Iter, which resgs to the presence of curves
and is designed for a fast convolution using the integrabena

Integral image is a data structure that stores the sum of pataees in the rectangle
de ned by the top left corner of an image and the current pix@metimes, it is called
“summed area table” from the eld of computer graphics. Ihdae computed in one
pass over an image. The most important property of the iategrage is that it enables
the calculation of a sum of image values in any rectangle ur aaditions. Therefore,
if a convolution Iter is composed of a few rectangles, thikas a rapid calculation of
convolution.

Of course, the goal here is to detect curves, and thus cuees to be approximated
by rectangles. By approximating a curve with rectanglesrehs a tradeoff in accuracy
for speed. A higher number of rectangles better approximateurve's shape, but does
not provide as much speedup. Another constraint in the dedithe lter is that the sum
of the Iter values must be zero. Otherwise, the Iter wouldspond even in areas with
constant intensity. The Iter must be symmetric as well, Isattthe response is the highest
when the lter is over the center of the curve. The smallestigilole Iter size that satis es
all these constraints is shown in Figure|2.1. The white aesagbements with value equal
to 1, and the dark area has elements with value equal to -1.

Flipping this Iter vertically, rotating by 180, and ipping horizontally captures the
response of curves of four different orientations. Moreeptations can be captured by ro-

tating the image by 45%or by using a rotated Iter in the manner of [LM02], where aated

14



Figure 2.1: Curve lter.

integral image data structure is developed. This gives ditiadal four orientations, for a
total of eight. Eight orientations allow us to nd the mostportant curves of most objects.
However, higher precision may be required in certain dosain

To get responses at different scales, the Iter is resizedatingly. The only restriction
in resizing is that the properties of the Iter are preserv@dhis means that the lIter size
must be a multiple of 24x12. As a result of this restrictidmst Iter will not be able to
nd curves less than this size. However, this does not causkl@ms, as curves smaller
than this are not well de ned and are not likely to be found sistently across images. In
the current implementation, the number of scales is as rsghoasible. For example, in a
320x240 image, 10 scales would be used.

Given an integral image, and a lter, the calculation of tHeer response is straightfor-
ward. For each pixel in the image, except for border pixelgemghhe response can not be
accurately calculated, the Iter is centered on it, and theaa of the big 24x12 rectangle
and small 16x9 rectangle are calculated from the integrafen Then the area of the small
rectangle is subtracted from the area of the big rectangld,tlae result is stored as the
response at this pixel. The calculation of the responsesliftarent orientations can be
speeded up by taking advantage of the fact that ipping ther lvertically or horizontally
only changes the position of the small rectangle. Thereftaikculations of the responses

for opposite orientations of the lter can share the restilihe area of the big rectangle.
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(c) Response of a lter oriented left (d) Response of a lter oriented down

Figure 2.2: Curve lter responses.

The lter responses for an example image are shown in Figu2e 2 high lter re-
sponse is indicated by black color, whereas no Iter respassndicated by white color.
These responses are only from one scale. It is clear thaedwaxkeas show high Iter re-
sponse. For example, tops of heads have a high responsetfeoiter oriented up. Areas
with very little texture show no response at all.

Curve features can be identi ed as peaks in these resportdeaever, there is one
complication. Areas in the image that have weak Iter resgmrcan still appear to be peaks.
Therefore, response images from Iters with opposite didéion are subtracted from each
other, and the absolute value is calculated. The resultiragye will have high values only

for pixels that are oriented in two opposite directions.efxvith weak response from both
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(a) Subtracted lter response (b) (a) enhanced in green and overlapped with input

Figure 2.3: Subtraction of opposite vertical directions.

lters will have values close to zero in the new image. Thisllisstrated in Figure 2.3.
Here residual Iter responses disappeared and the vedicattions clearly stand out.

Local peaks in this image are taken as centers of curves. Ripeke ned to be a pixel
with a value that is greater than or equal to other values kBangighborhood. The number
of neighbors with equal value as the peak is limited to twosoAthe number of peaks in
the image is limited by thresholding the peak values to beadtl45% of the maximum
response in the image. This avoids including peaks thatatreany strong. The orientation
of a peak is assigned by comparing the values of the respanesresponse images with
opposite orientations before subtraction. A higher respadn one direction than the other
determines the peak’s orientation.

Since peaks can have neighbors with equal values, it ispedsi get multiple peaks
responding to the same area in the image. This is undesirfadbause an unnecessarily
high number of features will slow down processing down the.liThis problem is solved
by clustering the peaks based on their location in the im#&gaks in each direction are
clustered separately. Agglomerative clustering is usetth &stopping criterion of a min-
imum distance between two clusters. When the minimum distdiecomes greater than

6 (s+ 1), wheresis a 0-based scale number, the clustering stops. The efféieiscstep
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(a) Before clustering (b) After clustering

Figure 2.4: Effect of feature point clustering (scale=2).

can be seen in Figure 2.4. Itis clear that duplicate peakdtared out. At the end of this

process, the number of curve features in a 320x240 images/aom 200 to 900.

2.2 Feature Descriptor

Now that the low-level features are identi ed, there neaxsd a way to match them across
images. This is accomplished by designing a scale-invafeature descriptor. The de-
scriptor is an 8-dimensional histogram, storing the nundb@ccurrences of features (ori-
ented curves) in the neighborhood of the feature. Each émtiye descriptor is weighted
by a Gaussian centered on the feature. This means that pbiisks to the center of the
neighborhood are weighted more than points at the boundahemeighborhood. Also,
each entry is linearly interpolated into the neighboringsiio avoid histogram bin bound-
ary effects. Finally, the descriptor is normalized to ueindgth.

To achieve scale invariance, the descriptors are calalliatehe scale in which the
feature was found, and the size of the neighborhood is kepigutional to the feature scale.
Atthe nestscale, the neighborhood size is 3x3. At coarsales, the size increases to 6x6,
9x9, and so on. The reason for the small neighborhood sipeaitid noisy descriptors. As

the size of the neighborhood increases, the descriptofastatl by features farther away,
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Figure 2.5: Head as a set of curves.

which are less likely to co-occur with the center feature epiag the neighborhood size
small ensures that features that have matching descripgally occur in the same image

areas.

2.3 Codebook

Curves and their descriptors on their own do not have enotgghichinative power for ob-
ject detection. A group of curves, is much more useful. Fanegle, a certain arrangement
of curves naturally describes the omega shape of a head.isTilisstrated in Figure 2.5.
However, in order to de ne a group of curves, each curve néedwmve a label. A group
can then be de ned by the labels of curves in the group. Fomgie, group 3-4-7 indi-
cates a group of three curves: curve-3, curve-4 and cunidié.idea is then to look at the
pattern of groups of curves, rather than single curves.

In our case, assigning a curve a label means assigning thre'suaiescriptor a label.
This is achieved by generating a set of possible descripgash with a unique label at-
tached to it. This set is often called a “codebook of localegvpnce,” or a “visual word
alphabet” in the literature. A curve is then assigned a lalbétis nearest neighbor in the

codebook.
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An optimal number of labels in the codebook is critical. Toany labels will make it
dif cult to get consistent matches between images. For ganthe curve on the top of the
head in one image may be labeled 12, and the same curve omtystigferent image may
be labeled 15. The labels must be consistent in the imagelagalescribe. A very low
number of labels, however, will not allow the algorithm tstilnguish between different
curves. Having less than eight labels will not even alloviedént orientations of curves to
be distinguished. An optimal number of labels lies somewletween the two extremes.

Determining the optimal number of labels is the same proldsmdetermining an opti-
mal number of clusters in clustering, where each data samm@leurve's descriptor. This
is a well studied problem. One solution to this problem it by Tibshirani et al in

TWHO1]. The authors use a heuristic that the optimal nundibefusters occurs when the
decrease in within-cluster dispersion attens out as thalner of clusters is increased. On
a plot of the within-cluster dispersion versus the numbezloséters, this is the location of

the “elbow.” The within-cluster dispersion farclustersW, is de ned as

L
W = 212—nrDr , (2.1)
where
Dr= & do, (2.2)
ii®2Cc,

C; is acluster, n, is the size o€, anddjjois the distance between two samples in a cluster.
The approach is to standardize the graph oilQdpy comparing it with its expectation

under a null reference distribution of the data. The optimahber of clusters is then the

the value ofk for which W falls the farthest below this reference curve. This valué of

maximizes the gap statistic, which is

Gam(k) = E,flogWg logW, (2.3)
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Figure 2.6: The gap statistic.

whereE,, denotes expectation under a sample of sif®m the reference distribution.

However, simply looking for the maximum value Gap,(k) will only work for well
separated data. More complex data distributions can haxaradocal maxima and the
optimal maximum can only be determined by looking at the pfoBap,(k). This is the
approach followed in this work.

In order to determine the optimal number of labels, 29272 dg®rs, generated from
200 images (positive and negative examples), were cluktefée clustering algorithm
used for eaclk wask-means, wheré& ranged from 2 to 35. The stopping criterion is the
absolute change in cluster centers. When this value drdpsv#001 k d, whered is
the dimension of each data point, clustering stops. In thautzion of the gap statistic,
the expectation was estimated by an average of 3 referetaeels. The samples in each
reference dataset were generated from a uniform distabuiver a box aligned with the
principal components of the data. The resulting gap statsplotted in Figure 2.6.

It is clear from the plot that the optimal number of labelsétviieen 8 and 33, because

that is the region of the plot with a maximum gap value. It iefasting to note that there is
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Figure 2.7: Image patches corresponding to descriptorsviaral clusters.

a local maximum ak = 3, but that one is clearly not the optimal global maximum. fEhe
fore, using a simple search for the rst local maximum wouldlg this suboptimal value.
The gap begins to rise againkat 34, but that number of labels is too high, resulting in a
very fragmented descriptor space, which is not good foepattecognition. The beginning
of the maximum ak = 8 is not surprising, because this corresponds to the eigmiapy
directions of our curves. However, only using eight wouldigs descriptors containing
multiple directions the same label as descriptors with aimaary direction. Therefore, the
optimal k for this application is somewhere in between. In this wdk;, 18 was used.
With this value ofk, 97% of descriptors fall into one of the eight labels cormgging to
primary curve directions.

This number can be veri ed by looking at the set of image pascthat generated the
descriptors belonging in each cluster. A selection of impaiehes in each cluster can be

seen in Figure 2/7. Itis clear that patches in a cluster haw@won appearance.
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2.4 Triplets

In this work, groups of three curves, called triplets, areduas mid-level features. Once a
codebook of feature descriptors is constructed, it is easletne these. For example, one
triplet can be de ned as 3-4-7, which means it is a group ofet8, curve-4, and curve-7.
This simple de nition, however, is still not discriminagvenough to be used directly. A
tripleta b coccursina multitude of geometric con gurations in imag€&kerefore, the
de nition of a triplet is augmented by several geometricgedies. These are calculated

from the triangle, where a vertex corresponds to the looaiia curve. The properties are:

Two angles de ning the triangle orientatioaq{;a»). One angle is not enough, due

to a mirror image ambiguity.

Internal angles of a trianglé{g).

Normalized size of one side of a triangle.
Normalized coordinates of each vertex of a triangle.

These are summarized in Figure 2.8. While this set of prageeis redundant in describing
the geometry of a triplet, it provides exibility in calculimg the geometric similarity of
two triplets.

In order to achieve correct matching of geometric propsrtietween triplets, for any
tripletde ned bya b c,a< b< c. This constraint ensures that, for example, the internal
angleb in one tripletis compared to the corresponding internal@imganother triplet. One
implication of this constraint is that a triplet must be dedby 3 different curves — triplet

3 5 5isnotallowed, for instance.
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Figure 2.8: Geometric properties of a triangle formed byifaléit.

2.5 Boosting

Triplets are easily transformed into weak classi ers. Teattire response of the weak clas-
si er is a minimum distance of a triplet to an image. This diste measures the geometric
similarity between the triplet of the weak classi er to tieps in an image with the same
label. If there is no such triplet in an image, the distandarred is in nity. Formally,
geometric similarity between two tripletisay b1 1 andtae p2 o2, is de ned as

8

2 KXa1 Xaok+ kXp1  Xpok+ kXc1 X2k al= a2;bl= b2;cl= c2
d(tar b1 ciitaz b2 2=
: ¥ otherwise

(2.4)
wherex denotes the location of a curve in normalized coordingi@d]). Using curve
locations in similarity calculations implies that classation is done in a detection window.
This is intentional, because the geometric location offadtiis signi cant. It helps to avoid
false matches between triplets. For ef ciency reasons,esgaometric properties of a pair
of triplets are checked before even calculating the forneangetric similarity. If any of
these properties are not satis ed, the distance returnediiematically in nity. These

properties are:
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Scale difference between corresponding curves is

a; difference

[e¢)ie]

a» difference

o

b difference %.
gdifference {%.
Normalized size difference 0:10.

Given the triplet distance to an image as a feature resp@ngeak classi er can be
trained to discriminate between two classes of exampleb, avi accuracy of 51-75%. In
training the weak classi er, examples where the featur@aoase is in nity are ignored.

This weak classi er is of the form:

8
2 .
1 if pfi(X) < pg
(9= t t (2.5)
- 0 otherwise

where p; indicates the polarity of the inequality sige, is the classi cation threshold of
the classi er, andf;(X) is the feature response. Hetés a detection window in an image.

Using the AdaBoost algorithm, a strong classi er can bettfuilm a set of weak clas-
si ers. After T iterations of the algorithm, the strong classi er is of thoerh:

8
00 i 1 if éthlf':lth[(x) cal,a 26)
0 otherwise

wherea; is the selected weight for classi éx(x), andc is a threshold.

The AdaBoost algorithm works best with a very large featuwelpldeally, all possible

triplets are considered as weak classi ers. However, stheenumber of possible triplets

is theoretically in nite, and practically very large, noll &riplets can be included in the
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feature pool. Therefore, a careful triplet selection pescies employed. Initially, the set
of available triplets is generated dynamically from thertirag set. For each image in the
training set, curves are extracted, and all valid combamatof 3 curves in the image are put
in the feature pool. Valid combinations of curves must hadédf@rent labels, and the scale
difference between the curves must bé.. In order to consider as many training images
as possible and achieve a diverse set of triplets, a tripletiuded in the feature pool only
if its geometric similarity to other triplets with the samabkl already in the feature pool
exceeds a threshold.

The resulting feature pool is still relatively large and qmutationally intensive for Ad-
aBoost. It also contains many triplets that have a responsenty one or two images.
In general, AdaBoost can work with these features, but ictpre, these present serious
over tting problems. Therefore, the pool is Itered as fols. For each triplet, its re-
sponses oR positive and\ negative examples in the training set are calculated anddsor

in ascending order. Then, a strength score of a tripl&t), is calculated using

P+cl>\| 1
St) = ()

gl=?

2 P i < p
sj) = p (P ) j

> p(j P+1) otherwise
wherepis 1 for positive examples andl for negative examples. The lower the score, the
weaker a triplet is. The score can be negative. Those tsiplett have a score less than
0.25 times the maximum possible score are removed from #tare pool. Similar feature
pool optimization has been done in [LKWO06]. This nal featysool is used in AdaBoost
to train a strong classi er.

Once AdaBoost completes, the resulting strong classi erloa applied on any detec-

tion window. First, the low-level features are extractecheif, each triplet in the weak

26



classi er is matched to possible triplets in the window. Tiesponse of a triplet is the
minimum geometric distance to matched triplets. Based enmtbak classi er threshold
and polarity, the response is classi ed as positive or riegail he strong classi er makes
a decision based on the sum of the responses of all triplets.

In a 320x240 image, thousands of detection windows are deresil. As a result, multi-
ple overlapping windows can be classi ed as a positive adahie object of interest. These
detections are cleaned up by sorting the windows by thegtinesf the classi er response,
and calculating the overlaps of each window. If the area efaerlap is greater than 50%

of the detection window, the overlapping window is removed.
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3. RESULTS

The algorithm was evaluated on a head and shoulders det¢atk. The positive training
set consisted of 527 images of people from the front viewpgea to contain the head and
shoulders, and centered in the image. The negative tragghgonsisted of 7,335 images
of anything but people. Triplets in the feature pool wereagated from a random subset
of 14 images from the positive training set. This featurelmomtained 172,000 triplets.
After feature pool optimization using the strength thrddhthe feature pool was reduced
to 25,886 triplets. This optimization was based on a randetro§ 57 positive and 57
negative images.

Only one AdaBoost cascade stage was trained for the purpbaégorithm evaluation.
The training performance was monitored on a small valichaiet of 57 positive and 57
negative images. Training was stopped after the strongicasichieved at least 90% true
detection rate and less than 4% false positive rate on thisAsea result, the nal strong
classi er contained 85 weak classi ers (triplets). The belor of the rst few triplets
chosen by AdaBoost is shown in Figure 3.5.

The testing set consisted of 500 positive images and 50Giuegaages. In a typical
183x145 test image, there were about 330 detection windested. A positive image was
classi ed correctly if at least one detection window ovee thead was positive. Similarly,
a negative image was classi ed correctly if no detectiondew was positive. The result-
ing true positive detection rate was 90% while the false thasrate was 2%. Example
detections are illustrated in Figure 3.2. Examples of d&rcmon images with multiple

people are shown in Figures 3.3 and|3.4. False positivesalgé hegatives can be seen
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Figure 3.1: Examples of correct detection from an opposée/point (not trained on).

in Figure 3.6. Post-processing of overlapping detectiamdaivs was turned on except for
detection in images with multiple people. This was becanskeis task the post-processing
algorithm did not work well, and removed the correct detattivindows. The number of
scales tested was reduced as well in this task.

In order to verify that the object detection algorithm isngsibbject's curves to make
a decision, the algorithm was also run on images with peapia the back view. This
viewpoint was not present at all in the training set. Howgetlee set of curves from the
back-view is roughly the same as the set of curves in the frmw. Therefore, the algo-

rithm should be able to work here as well. These results are/slin Figure 3.1.
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Figure 3.2: Examples of correct detection in a testing set.
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Figure 3.3: Examples of detection on images with multiplege.

31



Figure 3.4: Examples of detection on images with multiplege.

Figure 3.5: The rst few triplets selected by AdaBoost.

Figure 3.6: Examples of false negatives and false positives
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4. DISCUSSION

It is encouraging that signi cant performance was achiewét less than 100 triplets. This
is compared to hundreds of Haar wavelets necessary to aelyudetect a face. It is clear
that features which do not heavily depend on intensity ckfiees are useful.

It is interesting to see that the rst triplets selected byaBwost correspond to the
natural curves on the boundary of a head. The rst two tripledpture the top curve,
which stretches from the the left ear to the right ear. Thedttriplet makes the connection
between a head curve and a shoulder curve. The fourth tdpjetires a curve on the right
side of a head.

The true positive rate was 90% and the false positive rate2¥&asThis result is very
encouraging, considering that the images tested had asdiget of backgrounds, and the
algorithm is using only very simple features. It does noetako account local brightness
variations at all. This is con rmed further by the detectsoon a viewpoint not present in
training. Learning an object's shape rather an appearaives the algorithm a little bit of
viewpoint invariance.

It is clear from the correct detection examples, that theatian in appearance is
huge. There are people with light/dark skin, with/witholagges, with/without hats, with
long/short hair, with light/dark hair, even in a small vayief con gurations (facing left/right).
Haar wavelets, or other features that use brightness irgbomdirectly are not able to cap-
ture this variation in a compact form. The features intratlin this algorithm can, because

they look at object's structure rather than appearance.
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The failures of this algorithm are often a result of contgasiblems, where curves in
the image are not clearly evident. Also, some of these imagesigni cantly blurred,
which results in a very weak structure that is not capturethieyalgorithm. Loosening the
thresholds in the algorithm can help alleviate this prohlbuat it inevitably results in more

false positives. Solving these problems is an opportueityuture work.
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5. CONCLUSIONS

New low-level and mid-level features designed for curveptobdetection were presented.
These features capture the object's structure rather thpaaaance and thus do not suffer
from the background clutter problem. The low-level featuage fast to compute, which
makes them especially useful in real-time applicationse Whd-level features are built
from low-level features, and are optimized for curved obpstection.

Additionally, an object detection algorithm using thesattees was designed to evalu-
ate the features' usefulness. This was accomplished bgftraming the mid-level features
into weak classi ers. The results on head and shouldersteteshow a promising direc-
tion for detecting curved objects against cluttered baokgd, where the features on the

object's boundary are important.
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