You are here

HIGH POWER MODE-LOCKED SEMICONDUCTOR LASERS AND THEIR APPLICATIONS

Download pdf | Full Screen View

Date Issued:
2008
Abstract/Description:
In this dissertation, a novel semiconductor mode-locked oscillator which is an extension of eXtreme Chirped Pulse Amplification (XCPA) is investigated. An eXtreme Chirped Pulse Oscillator (XCPO) implemented with a Theta cavity also based on a semiconductor gain is presented for generating more than 30ns frequency-swept pulses with more than 100pJ of pulse energy and 3.6ps compressed pulses directly from the oscillator. The XCPO shows the two distinct characteristics which are the scalability of the output energy and the mode-locked spectrum with respect to repetition rate. The laser cavity design allows for low repetition rate operation <100MHz. The cavity significantly reduces nonlinear carrier dynamics, integrated self phase modulation (SPM), and fast gain recovery in a Semiconductor optical Amplifier (SOA). Secondly, a functional device, called a Grating Coupled Surface Emitting Laser (GCSEL) is investigated. For the first time, passive and hybrid mode-locking of a GCSEL is achieved by using saturable absorption in the passive section of GCSEL. To verify the present limitation of the GCSEL for passive and hybrid mode-locking, a dispersion matched cavity is explored. In addition, a Grating Coupled surface emitting Semiconductor Optical Amplifier (GCSOA) is also investigated to achieve high energy pulse. An energy extraction experiment for GCSOA using stretched pulses generated from the colliding pulse semiconductor mode-locked laser via a chirped fiber bragg grating, which exploits the XCPA advantages is also demonstrated. Finally, passive optical cavity amplification using an enhancement cavity is presented. In order to achieve the interferometric stability, the Hänsch-Couillaud Method is employed to stabilize the passive optical cavity. The astigmatism-free optical cavity employing an acousto-optic modulator (AOM) is designed and demonstrated. In the passive optical cavity, a 7.2 of amplification factor is achieved with a 50 KHz dumping rate.
Title: HIGH POWER MODE-LOCKED SEMICONDUCTOR LASERS AND THEIR APPLICATIONS.
41 views
20 downloads
Name(s): Lee, Shinwook, Author
Delfyett, Peter, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2008
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this dissertation, a novel semiconductor mode-locked oscillator which is an extension of eXtreme Chirped Pulse Amplification (XCPA) is investigated. An eXtreme Chirped Pulse Oscillator (XCPO) implemented with a Theta cavity also based on a semiconductor gain is presented for generating more than 30ns frequency-swept pulses with more than 100pJ of pulse energy and 3.6ps compressed pulses directly from the oscillator. The XCPO shows the two distinct characteristics which are the scalability of the output energy and the mode-locked spectrum with respect to repetition rate. The laser cavity design allows for low repetition rate operation <100MHz. The cavity significantly reduces nonlinear carrier dynamics, integrated self phase modulation (SPM), and fast gain recovery in a Semiconductor optical Amplifier (SOA). Secondly, a functional device, called a Grating Coupled Surface Emitting Laser (GCSEL) is investigated. For the first time, passive and hybrid mode-locking of a GCSEL is achieved by using saturable absorption in the passive section of GCSEL. To verify the present limitation of the GCSEL for passive and hybrid mode-locking, a dispersion matched cavity is explored. In addition, a Grating Coupled surface emitting Semiconductor Optical Amplifier (GCSOA) is also investigated to achieve high energy pulse. An energy extraction experiment for GCSOA using stretched pulses generated from the colliding pulse semiconductor mode-locked laser via a chirped fiber bragg grating, which exploits the XCPA advantages is also demonstrated. Finally, passive optical cavity amplification using an enhancement cavity is presented. In order to achieve the interferometric stability, the Hänsch-Couillaud Method is employed to stabilize the passive optical cavity. The astigmatism-free optical cavity employing an acousto-optic modulator (AOM) is designed and demonstrated. In the passive optical cavity, a 7.2 of amplification factor is achieved with a 50 KHz dumping rate.
Identifier: CFE0002093 (IID), ucf:47555 (fedora)
Note(s): 2008-05-01
Ph.D.
Optics and Photonics, College of Optics and Photonics
Doctorate
This record was generated from author submitted information.
Subject(s): Mode-locked laser
Semiconductor
Grating-coupled Surface-emitting Laser
Passive Optical Cavity
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002093
Restrictions on Access: public
Host Institution: UCF

In Collections