You are here

REAL-TIME TRAJECTORY PLANNING FOR GROUNDAND AERIAL VEHICLES IN A DYNAMIC ENVIRONMENT

Download pdf | Full Screen View

Date Issued:
2008
Abstract/Description:
In this dissertation, a novel and generic solution of trajectory generation is developed and evaluated for ground and aerial vehicles in a dynamic environment. By explicitly considering a kinematic model of the ground vehicles, the family of feasible trajectories and their corresponding steering controls are derived in a closed form and are expressed in terms of one adjustable parameter for the purpose of collision avoidance. A collision-avoidance condition is developed for the dynamically changing environment, which consists of a time criterion and a geometrical criterion. By imposing this condition, one can determine a family of collision-free paths in a closed form. Then, optimization problems with respect to different performance indices are setup to obtain optimal solutions from the feasible trajectories. Among these solutions, one with respect to the near-shortest distance and another with respect to the near-minimal control energy are analytical and simple. These properties make them good choices for real-time trajectory planning. Such optimal paths meet all boundary conditions, are twice differentiable, and can be updated in real time once a change in the environment is detected. Then this novel method is extended to 3D space to find a real-time optimal path for aerial vehicles. After that, to reflect the real applications, obstacles are classified to two types: "hard" obstacles that must be avoided, and "soft" obstacles that can be run over/through. Moreover, without losing generality, avoidance criteria are extended to obstacles with any geometric shapes. This dissertation also points out that the emphases of the future work are to consider other constraints such as the bounded velocity and so on. The proposed method is illustrated by computer simulations.
Title: REAL-TIME TRAJECTORY PLANNING FOR GROUNDAND AERIAL VEHICLES IN A DYNAMIC ENVIRONMENT.
21 views
10 downloads
Name(s): Yang, Jian, Author
Qu, Zhihua, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2008
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this dissertation, a novel and generic solution of trajectory generation is developed and evaluated for ground and aerial vehicles in a dynamic environment. By explicitly considering a kinematic model of the ground vehicles, the family of feasible trajectories and their corresponding steering controls are derived in a closed form and are expressed in terms of one adjustable parameter for the purpose of collision avoidance. A collision-avoidance condition is developed for the dynamically changing environment, which consists of a time criterion and a geometrical criterion. By imposing this condition, one can determine a family of collision-free paths in a closed form. Then, optimization problems with respect to different performance indices are setup to obtain optimal solutions from the feasible trajectories. Among these solutions, one with respect to the near-shortest distance and another with respect to the near-minimal control energy are analytical and simple. These properties make them good choices for real-time trajectory planning. Such optimal paths meet all boundary conditions, are twice differentiable, and can be updated in real time once a change in the environment is detected. Then this novel method is extended to 3D space to find a real-time optimal path for aerial vehicles. After that, to reflect the real applications, obstacles are classified to two types: "hard" obstacles that must be avoided, and "soft" obstacles that can be run over/through. Moreover, without losing generality, avoidance criteria are extended to obstacles with any geometric shapes. This dissertation also points out that the emphases of the future work are to consider other constraints such as the bounded velocity and so on. The proposed method is illustrated by computer simulations.
Identifier: CFE0002031 (IID), ucf:47594 (fedora)
Note(s): 2008-05-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): Trajectory Planning
Collision Avoidance
Nonholonomic
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002031
Restrictions on Access: public
Host Institution: UCF

In Collections