You are here

DESIGN AND OPTIMIZATION OF NANOSTRUCTURED OPTICAL FILTERS

Download pdf | Full Screen View

Date Issued:
2008
Abstract/Description:
Optical filters encompass a vast array of devices and structures for a wide variety of applications. Generally speaking, an optical filter is some structure that applies a designed amplitude and phase transform to an incident signal. Different classes of filters have vastly divergent characteristics, and one of the challenges in the optical design process is identifying the ideal filter for a given application and optimizing it to obtain a specific response. In particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an overall device package without requiring exotic fabrication steps, extremely sensitive alignments, or complicated conversions between optical and electrical signals. This dissertation explores three classes of nano-scale optical filters in an effort to obtain different types of dispersive response functions. First, dispersive waveguides are designed using a sub-wavelength periodic structure to transmit a single TE propagating mode with very high second order dispersion. Next, an innovative approach for decoupling waveguide trajectories from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response while minimizing fabrication limitations. Finally, high Q-factor microcavities are coupled into axisymmetric pillar structures that offer extremely high group delay over very narrow transmission bandwidths. While these three novel filters are quite diverse in their operation and target applications, they offer extremely compact structures given the magnitude of the dispersion or group delay they introduce to an incident signal. They are also designed and structured as to be formed on an optical wafer scale using standard integrated circuit fabrication techniques. A number of frequency-domain numerical simulation methods are developed to fully characterize and model each of the different filters. The complete filter response, which includes the dispersion and delay characteristics and optical coupling, is used to evaluate each filter design concept. However, due to the complex nature of the structure geometries and electromagnetic interactions, an iterative optimization approach is required to improve the structure designs and obtain a suitable response. To this end, a Particle Swarm Optimization algorithm is developed and applied to the simulated filter responses to generate optimal filter designs.
Title: DESIGN AND OPTIMIZATION OF NANOSTRUCTURED OPTICAL FILTERS.
19 views
7 downloads
Name(s): Brown, Jeremiah, Author
Moharam, Jim, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2008
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Optical filters encompass a vast array of devices and structures for a wide variety of applications. Generally speaking, an optical filter is some structure that applies a designed amplitude and phase transform to an incident signal. Different classes of filters have vastly divergent characteristics, and one of the challenges in the optical design process is identifying the ideal filter for a given application and optimizing it to obtain a specific response. In particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an overall device package without requiring exotic fabrication steps, extremely sensitive alignments, or complicated conversions between optical and electrical signals. This dissertation explores three classes of nano-scale optical filters in an effort to obtain different types of dispersive response functions. First, dispersive waveguides are designed using a sub-wavelength periodic structure to transmit a single TE propagating mode with very high second order dispersion. Next, an innovative approach for decoupling waveguide trajectories from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response while minimizing fabrication limitations. Finally, high Q-factor microcavities are coupled into axisymmetric pillar structures that offer extremely high group delay over very narrow transmission bandwidths. While these three novel filters are quite diverse in their operation and target applications, they offer extremely compact structures given the magnitude of the dispersion or group delay they introduce to an incident signal. They are also designed and structured as to be formed on an optical wafer scale using standard integrated circuit fabrication techniques. A number of frequency-domain numerical simulation methods are developed to fully characterize and model each of the different filters. The complete filter response, which includes the dispersion and delay characteristics and optical coupling, is used to evaluate each filter design concept. However, due to the complex nature of the structure geometries and electromagnetic interactions, an iterative optimization approach is required to improve the structure designs and obtain a suitable response. To this end, a Particle Swarm Optimization algorithm is developed and applied to the simulated filter responses to generate optimal filter designs.
Identifier: CFE0002502 (IID), ucf:47678 (fedora)
Note(s): 2008-12-01
Ph.D.
Optics and Photonics, College of Optics and Photonics
Doctorate
This record was generated from author submitted information.
Subject(s): Nanostructures
Waveguides
Numerical Modeling
Particle Swarm Optimization
Dispersion
Delay Lines
Bragg Gratings
Microcavities
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002502
Restrictions on Access: public
Host Institution: UCF

In Collections