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ABSTRACT 

Reduction of crash occurrence on the various roadway locations (mid-block segments; signalized 

intersections; un-signalized intersections) and the mitigation of injury severity in the event of a 

crash are the major concerns of transportation safety engineers.  Multi lane arterial roadways 

(excluding freeways and expressways) account for forty-three percent of fatal crashes in the state 

of Florida. Significant contributing causes fall under the broad categories of aggressive driver 

behavior; adverse weather and environmental conditions; and roadway geometric and traffic 

factors. The objective of this research was the implementation of innovative, state-of-the-art 

analytical methods to identify the contributing factors for crashes and injury severity. Advances 

in computational methods render the use of modern statistical and machine learning algorithms. 

Even though most of the contributing factors are known a-priori, advanced methods unearth 

changing trends. Heuristic evolutionary processes such as genetic programming; sophisticated 

data mining methods like conditional inference tree; and mathematical treatments in the form of 

sensitivity analyses outline the major contributions in this research. Application of traditional 

statistical methods like simultaneous ordered probit models, identification and resolution of crash 

data problems are also key aspects of this study. In order to eliminate the use of unrealistic 

uniform intersection influence radius of 250 ft, heuristic rules were developed for assigning 

crashes to roadway segments, signalized intersection and access points using parameters, such as 

‘site location’, ‘traffic control’ and node information. Use of Conditional Inference Forest 

instead of Classification and Regression Tree to identify variables of significance for injury 

severity analysis removed the bias towards the selection of continuous variable or variables with 
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large number of categories. For the injury severity analysis of crashes on highways, the corridors 

were clustered into four optimum groups. The optimum number of clusters was found using 

Partitioning around Medoids algorithm. Concepts of evolutionary biology like crossover and 

mutation were implemented to develop models for classification and regression analyses based 

on the highest hit rate and minimum error rate, respectively. Low crossover rate and higher 

mutation reduces the chances of genetic drift and brings in novelty to the model development 

process. Annual daily traffic; friction coefficient of pavements; on-street parking; curbed 

medians; surface and shoulder widths; alcohol / drug usage are some of the significant factors 

that played a role in both crash occurrence and injury severities. Relative sensitivity analyses 

were used to identify the effect of continuous variables on the variation of crash counts. This 

study improved the understanding of the significant factors that could play an important role in 

designing better safety countermeasures on multi lane highways, and hence enhance their safety 

by reducing the frequency of crashes and severity of injuries. Educating young people about the 

abuses of alcohol and drugs specifically at high schools and colleges could potentially lead to 

lower driver aggression. Removal of on-street parking from high speed arterials unilaterally 

could result in likely drop in the number of crashes. Widening of shoulders could give greater 

maneuvering space for the drivers. Improving pavement conditions for better friction coefficient 

will lead to improved crash recovery. Addition of lanes to alleviate problems arising out of 

increased ADT and restriction of trucks to the slower right lanes on the highways would not only 

reduce the crash occurrences but also resulted in lower injury severity levels.  
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CHAPTER 1. INTRODUCTION 

1.1 Research Motivation 

Improving the safety of arterials, by reducing fatalities and injuries, is one of the objectives of 

transportation safety researchers and engineers. Florida is one of the states with high number and 

rates of fatalities in the United States of America. In 2008, 2,978 fatalities occurred on roadways 

in Florida (NHTSA, 2008). Though this indicates a 7.3% decrease in the number of fatalities yet 

the number is alarmingly high. The state ranks third in the number of fatalities among all other 

states in the country. Among the different road types, principal and minor arterials account for 

the 57% of the total crashes in Florida (NHTSA, 2005). The proportion and the sheer number of 

fatal crashes on principal arterials (excluding freeways and expressways) in Florida were one of 

the highest in the nation in 2005. In particular, speeding-related fatalities on arterials with speed 

limits of 40 mph and above account for more than 72% of total speeding-related fatalities.  

 

The statistics presented above indicate a need to improve the safety of Florida arterials, 

especially the high-speed, multi-lane arterials, by reducing fatalities and severe injuries. Fatal or 

severe crashes on arterials occur due to a combination of multiple factors. Hence to reduce 

fatalities and severe injuries on the arterials generally two approaches can be adopted. One is to 

look at the intersections and the roadway segments (excluding the intersections) separately and 

the other is to treat them together as a corridor. The former idea involves the use of the definition 

of influence distance of intersections to separate the intersection related crashes from the 

segment related crashes. Das et al. (2008), showed by the method of simultaneous estimation that 
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if the influence distance varied the crash characteristics associated with severe injuries also 

varies. This is due to the fact that the farther we move away from the center of an intersection, 

more crashes related to the connecting segment comes into play. Wang et al. (2008) used 

frequency modeling for crashes with fixed as well as varying influence distance and found 

different set of significant factors. These studies show that the concept of using influence 

distance for assigning crashes to the roadway elements could be erroneous. However it is 

believed that analyzing the crashes along a corridor will instead help us identify the significant 

factors more realistically and understand the interaction among the design elements and traffic 

characteristics better.  

 

1.2 Research Objectives 

The main objectives of this research are the following:  

1. Critical review of the work done on safety analysis, specifically arterial or corridor safety 

studies carried out in the various states of the country.  

2. Evaluate the futility of the 250 ft. influence radius of signalized intersections in the state 

of Florida 

3. Enhancing the crash database with data from the roadway characteristics inventory and 

developing heuristic rules for assigning crashes to various roadway elements.  

4. Analytical methods like data mining and machine learning algorithms for classification of 

injury severity models, identifying variables of importance and crash frequency modeling 

for broader understanding of the safety situation on the multi lane highways.  
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Mathematical treatment of crash count models for better evaluation of significant 

variables. 

5. Design and probable policy recommendations to ameliorate safety on highways based on 

the research findings.  

 

1.3 Organization 

The literature review, following the introduction, includes arterial safety studies, crash prediction 

models, and corridor studies. In the third chapter the initial investigation of simultaneous ordered 

probit models is discussed where the topic of the fixed influence distance is taken up. The 

chapter following that describes the heuristic rules developed to assign crashes to the various 

roadway elements. The next chapter deals with the various databases available with Florida 

Department of Transportation (FDOT) namely: 1) Crash Analysis and Reporting (CAR) System; 

and 2) Roadway Characteristic Inventory (RCI). The clustering of corridors is also described in 

the chapter. The sixth chapter uses the innovative conditional inference trees and forests to 

understand the injury severity conditions and better the understanding of the significant factors. 

The seventh chapter introduces the concept of genetic programming for transportation safety 

study. It is introduced as an umbrella methodology for both classification and regression 

purpose. For the present work the author has used it for injury classification and crash count 

modeling. The eighth chapter is a graphical demonstration of the change in crash frequency as 

other continuous variables change. Relative sensitivity of the crash frequency model response 

towards the continuous input variables is also discussed.   
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CHAPTER 2. LITERATURE REVIEW 

2.1 Previous Studies 

This chapter summarizes some of the relevant studies. We review some of the past studies that 

are relevant to high speed multi lane arterials in general, and those looking into severe crashes in 

particular. The literature review is divided into 3 sections. Section 1 deals with the work done in 

the past related to arterials. The studies were not always focused on safety issues. Some of them 

e.g. dealt with median design guidelines. But they always required some crash studies to be 

undertaken. The section looks at selected and noteworthy work done from the late 1960’s to mid 

1990’s. There were studies related to arterials, but not exclusively dealing with the issue of 

corridor safety. At the end of the section the overall results will be summarized. 

 

Section 2 deals with selected and important work done on crash prediction models on roadway 

segments. The significant factors in the models will be discussed. In addition to it the research 

done to investigate contributing factors to severe crashes will also be discussed. Since we are 

interested in reducing fatalities and severe injury related crashes this discussion is essential. It 

will also address another important issue of how varied each researcher’s point of view is on the 

definition of a roadway segment. The criteria to define a roadway segment differ. These 

discrepancies in the working definition of a segment can lead to confusing inferences. Again at 

the end of the section there will be a discussion on the results from the work and how vast is the 

problem of segment definition.  
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Section 3 discusses some chosen papers dealing with the issue of corridor safety especially from 

the point of view of access management. It will also take up recent research work on signalized 

intersections that has shown that there is a spatial correlation among them and they influence 

each other in many aspects. At the end of this section there will be a final discussion as to why it 

is important to address the safety aspect of the corridor as whole, both roadway segments and 

intersections included. 

 

2.1.1 Section 1: Arterial Safety Research 

Mulinazzi and Michael (1967) developed crash prediction models for urban arterials and Walton 

et al. (1978) built up a regression equation to predict crashes at two-way left turn (TWLT) 

median lanes in Texas. Average daily traffic (ADT), number of traffic signals per mile, were the 

common significant factors in both studies. The former also found number of high volume 

intersections per mile to be important. The latter specified that number of driveways per mile and 

area population were contributing factors too.  

 

In his Virginia study for design guidelines for raised and transversable medians, Parker (1983) 

and also in an update in 1990, found that number of traffic signals per mile, number of driveways 

per mile, area population and ADT had a significant effect on crashes for raised median sections. 

In an update to his previous work Parker (1990) found the same results.   
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Squires and Parsonson (1989) in their study of crash comparison of raised median sections and 

TWLT median lanes in Georgia established that ADT and number of traffic signals per mile 

were important factors.  

 

Bowman et al. (1995) found land use, median width, and number of driveways per mile, posted 

speed limit and crash reporting threshold in dollars to be significant factors in crash prediction 

models for urban or suburban arterials’ roadway sections with homogeneity in median type. 

Though the study included arterial sections with signalized intersections, they did not find 

number of signalized intersections along the arterial section to be significant.  

 

Mountain et al. (1996) developed crash prediction models for road network in seven counties of 

the U. K. Total two-way annual segment volume, length of the segment and number of minor 

intersections within the segment were significant factors.  

 

From the results in the research papers discussed above it can be concluded that some design 

elements and certain traffic elements play a major role in crashes occurring along the arterials. 

The design elements significant in most of the work are number of traffic signals per mile, 

number of driveways per mile or driveway density, median width and length of the segment. The 

traffic characteristics that are important are ADT, speed limit and annual volume. In addition to 

the above mentioned factors some study also found land use and population of the area to be 

significant.  
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2.1.2 Section 2: Crash Prediction Models 

Kim et al. (1995) investigated the predictors for crash and injury severity on roadways in Hawaii. 

Alcohol abuse and seat belt disregard were found to be important factors contributing to the 

cause of crashes and also result in more severe crashes.  

 

O’Donnell and Connor (1996) in their work on predicting severity of motor vehicle crash injury 

had non-use of seat belt, head on collisions, and alcohol as significant factors. Female drivers 

were found to be more involved in severe crashes than male drivers.  

 

Bonneson and McCoy (1997) investigated roadway segments for their study of the effect of 

median treatments on urban arterial safety. They defined the roadway segment as the section 

between two consecutive signalized intersections. In addition to that, for their work, they chose 

the segments with a minimum number of vehicles per day, speed limit, number of through lanes 

and length. ADT, segment length, driveway density, unsignalized public street approach density 

and land use were significant factors in their crash model which did not include crashes at 

intersections.   

 

Milton and Mannering (1998) found section length, AADT, percentage of AADT occurring 

during peak hour, percentage of trucks, speed limit, number of lanes, shoulder width, horizontal 

curves, and tangent length as the significant factors contributing to crash frequencies on highway 

sections that excluded signalized intersections. Section or segment delimiters were number of 
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lanes, roadway width, shoulder width, state route number, road type, urban or rural location 

identifiers, speed, AADT, peak hour factors, and vertical and horizontal curve characteristics.  

 

Chang and Mannering (1999) analyzed injury severity for truck- and non-truck involved crashes. 

For non-truck involved crashes driver ejection, driver restrained systems, alcohol impairment are 

responsible for fatalities and more severe injuries. Truck involved crashes are more serious.  

 

Sawalha et al. (2001) examined safety of urban arterial roadway segments, which was defined as 

the part of the arterial between consecutive signalized intersections. Traffic volume, segment 

length, unsignalized intersection density, type of median, number of crosswalks, number of lanes 

and land use were important factors in the model developed by them.  

 

Hanley et al. (2000) analyzed crash reduction factors on California State highways. The 

segments were chosen based on AADT and it is not very clear from the work whether 

intersection were included or not. Increases in shoulder width and curve correction with 

improved radius were found to be significant.  

 

Zhang et al. (2000) in their study of the factors affecting severity of motor vehicles crashes in 

Ontario established that age, disobeying of traffic signs, non-use of seat belts, intersections 

without traffic control, speed, head on and turning collisions, overtaking maneuvers increased 

the risk of a fatal or severe injury crash. Alcohol and medical/physical condition of elderly 

drivers significantly increased the risk of fatalities.  
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Bedard et al. (2002) in their work on causes related to driver fatalities on roadways found that 

age, alcohol, point of impact, seat belt non-use and speed as significant factors. Older male 

drivers were more prone to fatal crashes than older female drivers.   

 

Kockelman and Kweon (2002) examined driver injury severity and found that increased driver 

age, vehicle age, alcohol use, head on or rollover collision, numbers of vehicles involved were 

associated with more severe injuries.  Female drivers and night time driving were related to 

increase in injury severity of two-vehicle crashes.  

 

Martin (2002) sought to find the relationship between crash rate and traffic flow on French 

interurban motorways. Hourly traffic, day of the week and number of lanes were the contributing 

factors. Night time crashes and crashes occurring under light traffic conditions are found to result 

in more severe injuries. The roadway sections or segments were homogenous in terms of traffic 

between two motorway entry points. It is not apparent as to whether the entry points are 

signalized or unsignalized intersections.  

 

Greibe (2003) built up crash prediction models for urban roads in Denmark where ADT, land use 

and speed limit were essential factors. Segments and intersections were treated independently. 

But intersections with low flow rate were included in the segments. And it is not obvious 

whether intersections are signalized or unsignalized.  
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Abdel-Aty (2003) analyzed driver injury safety levels at multiple locations and found driver’s 

age, gender, seat belt use, point of impact, speed, vehicle type, weather condition and area type 

as major factors. His study also investigated segment and intersection crashes disjointedly. In his 

work he found seat belt disregard, age, gender, speed, point of impact and alcohol consumption 

to be important factors contributing to severe injury related crashes. Crashes occurring on curved 

segments had higher probability of resulting in severe injuries. Abdel-Aty and Abdelwahab 

(2004) also found similar results for injury severity levels in traffic crashes.  Female drivers were 

more probable to be in a severe injury crash than male drivers. Older people were more likely to 

be involved in a severe injury crash than younger drivers.  

 

Hiselius (2004) in his study of Swedish rural roads investigated roadway segments without 

intersections. His segment criteria were traffic flow, speed limit and road width.  

 

In Illinois county-level data study by Noland and Oh (2004) roadway section categorization was 

based on location (urban or rural), divided or undivided cross section, number of lanes, average 

median width, average shoulder width, and horizontal and vertical curvature. Again it is not 

understandable as to whether intersections were included or not. Increase in number of lanes and 

increment in lane width was found to be associated with increase in fatalities and crashes. 

Increase in shoulder width resulted in fewer crashes. 

 

Miaou and Song (2005) ranked sites for engineering safety improvements. They analyzed 

segments and intersections separately. The segments they considered had low traffic volume. 
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The design elements that were found to be most important in the above mentioned research 

works on roadway segments are segment length, driveway density, number of lanes, shoulder 

width. Other important design elements were road width, number of crosswalks, horizontal and 

vertical curves. The traffic elements of significance were ADT and speed limit. In addition to 

these some work also showed that standard deviation of traffic flow, percentage of different type 

of vehicle were also significant. Land use was also found noteworthy in some of the work.  

 

As far as the factors contributing to fatal and severe injury crashes are concerned, it is observed 

that more driver related characteristics are responsible. Design and traffic parameters are not 

ruled out, but their contribution to specifically those crashes is less. Non-use of seat belt, older 

driver age, alcohol use, and speeding are found to be significant in most research work related to 

severity of crashes. Head-on and angle collisions result in more fatalities and severe injuries than 

any other type of crashes. Some research work show that crashes occurring at night and under 

light traffic conditions are more severe. Severity of crashes is also dependent on the point of 

impact of crash, especially the ones hitting from the side. Intersections without control witness 

more severe crashes.  

 

Different authors have their own view point as to how to define the segment. A roadway is 

typically the section of the roadway between two consecutive signalized intersections. In some 

segment studies unsignalized intersections have been included. Some work mentioned the 

inclusion of low volume intersections but do not clearly specify whether those are signalized or 

unsignalized. The criteria to choose the segments are characteristically speed limit, number of 
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lanes, ADT, shoulder width and roadway width. Some researchers have in addition to the above 

criteria had vertical and horizontal characteristics, road type, urban or rural location as the 

segment defining criteria. So it can be clearly seen that the vast literature has a confusing 

definition of segments in crash modeling. 

2.1.3 Section 3: Corridor Safety 

Jernigan (1999) compared the various corridor safety improvement efforts by Pennsylvania, 

California and Virginia. He also provides model strategy for the development of these programs.  

 

Levinson (1999) and Papayannoulis et al. (1999) developed a model for safety of corridors based 

on traffic volumes of corridors and access roads and access density. Increase in crashes was 

related to the increase in access density.  

 

Brown and Tarko (1999) also found density of access points, proportion of signalized access 

points, outside shoulder, TWLT lanes and presence of medians with no openings between signals 

as significant factors for safety on urban arterials. They investigated the corridor as a whole.  

 

Abdel-Aty and Radwan (2000) modeled traffic crash occurrence and involvement along SR-50 

of Florida and found AADT, degree of horizontal curvature, lane shoulder, median width, urban 

or rural location, section length to be significant factors. Their section definition included 

intersections.  
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Drummond et al. (2002) used simulation approach to predict safety and operational impacts of 

increased traffic signal density along entire corridors. The major factors were main-line delay, 

speed limit and stops.  

 

Rees (2003) in his corridor management studies investigated full corridors. His study also 

focused on applying access management treatments along corridors.  

 

A very recent work Abdel-Aty and Wang (2006) have shown in their modeling work of 

signalized intersections that there is a spatial correlation between crash patterns of successive 

signalized intersections.  

 

The work on the spatial correlation of crash patterns of successive signalized intersections show 

that there is a need to look at the sequence of signalized intersections along a corridor rather than 

treating each intersection as an isolated entity. Intersections are also access points. The access 

management studies for corridor safety illustrate that the roadway segments and intersections are 

integral part of the corridor. Therefore we should improve the corridor as a whole, both roadway 

segments and intersections, in order to achieve significant reduction in fatal and severe crashes.  

 

2.2 Improvement strategies implemented by different States and the level of success 

Corridor Safety Improvement Programs (CSIPs) were initiated on the fact that crashes are likely 

to occur along joined segments of highways. Some of these joined segments of highways or 
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corridors as they are commonly known as, have a relatively high crash rate. To reduce the 

fatality and injury rate on these corridors it may not be sufficient that only spot improvements are 

done (Jernigan, 1997). Therefore multidisciplinary cooperation is necessary to bring about major 

safety and traffic changes on these corridors.  This report summarizes the work done on 

improving safety on high-speed multi-lane arterials by different states in the U.S. The first such 

improvement task was carried out by Pennsylvania Department of Transportation (PennDOT) on 

the U.S. Route 322 following a series of fatal crashes. The success of the program led to similar 

work throughout the state and the Federal Highway Administration (FHWA) encouraged for 

similar projects in other states. In 1991 the FHWA issued guidelines for developing a CSIP. The 

essence of the guidelines was to establish a leadership based program to oversee the work of 

improving safety along hazardous corridors. The guidelines had provision for involving various 

agencies, creating a multidisciplinary team, selecting corridors, creating an action plan, 

implement the recommendations and evaluate the effectiveness. The states who initiated corridor 

safety improvement program on their roads, more or less followed the FHWA guidelines.  

 

The following discussion focuses on the work done in 10 different states across the nation. They 

have been selected for discussion here as substantial information could be gathered from various 

sources about their work. The states are: Pennsylvania, Washington, Virginia, California, 

Oregon, North Carolina, Kentucky, Arizona, Ohio and Florida. 
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2.2.1 Pennsylvania 

The pilot project in the safety improvement program of Pennsylvania was the U.S. Route 322 in 

Delaware County which is a high-volume and high-speed highway. The route was chosen on the 

behest of the then Pennsylvania Governor Robert P. Casey following a crash on the stated 

corridor that resulted in multiple fatalities in 1988. The plan was successfully implemented in a 

period of 6 months. The typical corridor safety problems were identified along the designated 

corridor. Among the various countermeasures, highway design improvements, educational, 

media programs and enforcement drives to improve driver performance, and commercial truck 

safety inspections were the most important (Zogby et al., 1991). Emergency medical services 

were also improved along the designated corridor. The corridor had 40% less number of crashes 

in the 3 years following the improvements (Jernigan, 1999). Later on 55 corridors, totaling 880 

miles of highway, were earmarked for the safety initiative. The sections not only accounted for 

7% of the total fatalities but also had the maximum concentrations of severe crashes per mile. 

Three Pennsylvania agencies: PennDOT, Department of Health and the state and local police 

work in synergy. The improvements were applied over the entire length of the section and thus 

improved the overall safety along the length (Zogby et al., 1991). In 2002, Pennsylvania House 

Bill 2410 came into effect which allowed for fines to be doubled on the designated safety 

corridors. The safety effect of the bill has not been yet established.  
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2.2.2 Washington 

Soon after the success of the Pennsylvania initiative the FHWA encouraged other states to follow 

similar programs. Washington was one of the first states to start such a statewide program. The 

program which started in 1992 is still on. Several projects have been successfully completed and 

others are on the way. The Washington State Corridor Safety Program is a joint program 

between Washington Traffic Safety Commission and the Washington Department of 

Transportation (WSDOT) and the goal is to reduce “fatal and disabling” crashes along the 

designated corridors. The corridors selected have to have a statistical evidence of crash problem 

and there must be local support for the undertaken project (Washington Traffic Safety 

Commission [WTSC], 2006). Some of the corridors like SR 14 which was one of the designated 

corridors had safety concerns like speeding, over the centerline crashes, driving under influence 

(DUI) and operating defective equipment (National Highway Traffic Safety 

Administration[NHTSA], 2004). The action plan primarily consisted of 3E’s: enforcement, 

engineering and education (NHTSA, 1997). Till now 21 projects have been completed and 9 

projects are still on. The number of crashes along 24 designated corridors has reduced by 6%; 

reduction in traffic injuries is by 11%; alcohol related crashes have gone down by 20%; most 

importantly fatality-disabling crashes has dipped by 34%. The fundamentals elements of the 

program are education, enforcement and engineering solutions to improve safety on the 

designated corridors (WTSC, 2006).  
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2.2.3 Virginia 

Virginia also became active in the field of corridor safety in 1992 after the success of the 

Pennsylvania program. Virginia’s program differed considerably from FHWA guidelines 

(Jernigan, 1997). The Virginia Department of Transportation (VDOT) and Virginia Department 

of Motor Vehicles (DMV) co-sponsored 2 pilot projects; one urban and one rural. Apart from 

safety the authorities wanted to find out the possible differences in the ability of the program to 

be effective (Jernigan 1999). The urban corridor was a 5.5 mile segment on U.S. Route 144 

while the rural corridor was a 19 mile stretch on U.S. Route 24. The significant safety problems 

on the corridors were driver’s inattention, speeding, defective vehicles, DUI, rear-end crashes, 

angle crashes, fixed object crashes (run off road), and sideswipes. The suggested improvements 

to check the safety issues were: lowering speed limit, enforcement, improving signage and sight 

distance, warning for DUI checkpoints along the corridor, installations of traffic signals, changes 

in approach to intersections, installing of guardrails, and addition of paved shoulder (Jernigan, 

1997).    After the improvements have been implemented there were 5% less number of injury 

crashes on the rural corridor and the injuries decreased by more than 10%. The situation was a 

bit different for the urban corridor. Though the injury crashes decreased by 10%, the injuries 

went up by 5%. Virginia has also developed a methodology for determining safety corridors for 

investigation and improvement (Fontaine and Read, 2006). The designated corridors should 

definitely have above average crash rate and densities (Virginia’s Surface Transportation Safety 

Executive Committee, 2006).  
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2.2.4 California 

In 1992 California also started a corridor safety program which was led by the California 

Highway Patrol and not by the state’s DOT. A corridor of 21 mile length on State Route 1 in the 

Ventura County was chosen. This was done in collaboration with Caltrans and California’s 

Office of Traffic Safety. The recommendation for safety improvement included enforcement, 

engineering solution, education, public information and emergency response. The number of 

injury crashes and injuries dropped by 25% on the corridor (Jernigan, 1999). The crash rate 

decreased by 11% to 37% within a 3 year analysis period and injury crash rate decreased by 13% 

to 47% (Fontaine and Read, 2006). SR 41 and SR 46 were designated safety corridors after a 

severe collision resulted in multiple fatalities in 1995. The safety problems identified were 

unsafe turning, unsafe speed, right of way violations, DUI and driver not at fault. The 

countermeasures implemented fell into the categories of 4E: education, enforcement, engineering 

solution and emergency response. The efforts paid off well. The fatalities were reduced by 10% 

and injury crashes decreased by 32% (Bichler-Robertson et al., 2001). In the recent past State 

Highways 25, 49, 65 have been designated as safety corridors. For SR 25 the goal is to reduce 

the fatal and injury crashes (California Department of Transportation, 2006). 

 

2.2.5 Oregon 

In 1993 Oregon jumped into the scene of corridor safety improvement programs. These were 

implemented along Oregon Route 34 and 22. The typical safety concerns on the corridor were 

speeding, variation in speed and access related crashes. Increased level of enforcements, dividing 
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the highway and limiting the number of access points, provision of acceleration and deceleration 

lanes at major access points, limited use of traffic signal and decreasing speed limit were some of 

the recommendations for improving safety.   The program was a success as far as the phase 1 of 

the project was concerned (Hunter-Zaworski and Price, 1998). The safety corridors had less 

fatalities and crashes. In 2001, doubling fines were effective in the safety corridors of Oregon. 

An important conclusion that came out of that was drivers have a higher perception of accident 

risks, traffic citations and fines in work zones and school areas than safety corridors (Jones et al., 

2002). For the new safety corridors’ designation the following three criteria must be met: 1) the 

three-year average of the fatality and injury crash rate must be greater than or equal to 110% of 

the three-year statewide average for similar type of roadways; 2) if the state or the local law 

enforcement agencies commit to make a certain corridor “patrol priority”; 3) the designated team 

concur that the length is manageable from an enforcement and education point of view (Oregon 

Department of Transportation [ODOT], 2006). Oregon Routes 62, 22, 34, 11, 18, 99E, 140 and 

U.S. Routes 101, 199, 20, 26, 730 are the routes where the safety corridors in the state of Oregon 

currently located (ODOT, 2007).  

 

2.2.6 North Carolina 

In 1998 the highway safety program of North Carolina came into being in 21 counties across the 

state. Fatal truck related crashes were the major safety problem. As a result there were increased 

roadside inspections, more number of citations for commercial driving license (CDL) violations. 

Within a year of its implementation there were a 4.6% reduction in the crashes involving 
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commercial motor vehicles (CMVs) in the marked counties and 5.2% reduction in crashes 

involving CMVs in counties that had not being targeted. There was a decrease of fatalities by 

17.7% from crashes involving CMVs in the targeted counties, where as there was an increase in 

fatalities by 7.6% for crashes involving CMVs in the non-targeted counties (Hughes, 1999). The 

overall crash rate however did not change substantially.  

 

2.2.7 Kentucky 

In 1997 the Kentucky Transportation Cabinet started the Safety Corridor Program in an attempt 

to reduce the number of crashes and the number of injuries and fatalities on the state highways. 

A methodology for selecting high crash corridors has been developed and also a crash analysis 

technique has been proposed (Green and Agent, 2002). The US Route 31W was the designated 

corridor. The rural section of the corridor had a higher percentage of the fatal/injury crashes at 

intersection resulting from angle crashes. There was also a high percentage of run off the road 

crashes in the rural section, while the urban section had a higher percentage of rear-end crashes 

and the urban section had more crashes on straight sections. From noon to 6 pm there was 

reported to be a high number of crashes. Business and industrial districts had a higher percentage 

of the crashes. Failure to yield, following too closely, driver’s inattention were also major 

contributing factors for fatal/injury crashes (Green and Agent, 2002).  The focus has been on 

enforcement and education to alleviate the safety problems.  
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2.2.8 Arizona and Ohio 

A pilot study was conducted by Arizona Department of Transportation (ADOT) in 1995 to see 

how the corridor safety improvement program takes shape. It was concurred that the tools 

demonstrated for the pilot study could lead to progress in safety improvement identification and 

they could be used by agencies other than ADOT (Breyer and Joshua, 1999).  

 

In 2005 Ohio’s Highway Corridor Safety Program got started. Seven highways were identified: 

SR 37, 46, 49, 50, 60, 73 and 193 (Governor’s Task Force on Highway Safety, 2005). The 

governor’s task force on highway safety has issued a handbook of guidelines and procedures 

which includes process to select a safety corridor and also toolbox for safety study and 

countermeasure.  

 

2.2.9 Florida 

The goal of the project set up in 1992 by Florida’s Safety Management System was to establish 

Corridor/Community Traffic Safety Program (C/CTSP) in the each of the 20 high crash counties 

across the state by 1996 to reduce the number of fatalities and injuries. The concept was pilot-

tested in Lakeland, Florida in collaboration with Florida Department of Transportation (FDOT). 

The project was a success and a state-wide C/CTSP coalition has been formed (NHTSA, 1996). 

The chosen corridor was Florida Avenue. Speeding, DUI, no-use of seat belt were some of the 

safety concerns on the corridor and improvements were suggested accordingly. There was a 

reduction in number of crashes and injuries during the analysis period (Dummeldinger et al., 
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1994). In a recent research work on the safety of six lanes divided highways it was recommended 

that reduction in horizontal curves, increase of median and shoulder width can reduce the rate of 

severe and fatal crashes (Petritsch et al., 2007). 94% of the fatal crashes are caused by human 

factors. 4E’s is the recommended course of action to reduce sever/fatal crashes (Spainhour et al., 

2005).  

 

2.2.10 Overview of Typical Safety Issues on Corridors 

The safety issues that the corridors experience can be broadly divided into 2 categories. One is 

the roadway design deficiencies and the other is drivers’ performance failures. Roadway design 

deficiencies include too many access points, higher number of traffic signals than is actually 

required, inadequate shoulder, absence of or inadequate length of acceleration/deceleration lanes 

among others. Drivers’ performance failures include speeding, DUI, CDL violations, over the 

centerline crashes, operating defective vehicles, right of way violations, and no-use of safety 

belts among others. The most common type of crashes observed were angle, rear-end, and fixed 

object (runoff road) crashes. Many safety corridors also had a high percentage of truck involved 

fatal/injury crashes.  

 

The safety improvements on corridors under study are based on the observed safety issues. The 

typical implementation has been that of the 4E’s: education, enforcement, engineering solutions 

and emergency response. Education and media information has helped to make the community 

aware of the hazardous corridors and urging people to proactively help in improving safety on 
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the roads. Enforcement activities in many states include increased patrolling, doubling fines on 

the designated corridors, increased number of citations for violations of traffic rules, booking 

drivers for DUI and increased roadside inspection of commercial vehicles. Changes in roadway 

design on section of the corridors, reducing or increasing traffic signals, access management, 

adding paved shoulders, modifying acceleration/deceleration lanes are among the recommended 

engineering changes required to alleviate safety. Improving emergency response to better the 

probability of survival for crash victims has been a top concern for state agencies. Table 2-1 

provides a comparison of the work done in various states and a perceived success measure.  

Table 2-1 Work done in various states on corridor improvement  

 Initial 
Initiatives 
(Yes or No) 

Success Measure 
of Initial Initiatives 

New Initiatives 
/ Projects 

Success Measure 
of New Initiatives 

Pennsylvania Yes High Doubling fines No data 
Washington Yes High New projects No data yet 
Virginia Yes Relatively good New projects No data yet 
California Yes High Doubling fines High 
Oregon Yes Relatively good Doubling fines No data yet 
North Carolina Yes Relatively good - - 
Kentucky Yes - - - 
Arizona Yes  Relatively good - - 
Ohio Yes - - - 
Florida Yes Relatively good New projects - 
 

The ‘initial initiative’ column indicates whether the state had initiated any projects or 

enforcements to improve safety on the problematic corridors. The following column reflects on 

how successful the initiatives have been in due course of time. The ‘new initiatives/ projects’ 

column shows what type of initiatives the states are having for the future in terms of project 

implementation or policy changes. The column next to it again indicates how successful the new 

measures have been.  
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CHAPTER 3. URBAN ARTERIAL CRASH CHARACETRISTICS 
RELATED WITH PROXIMITY TO INTERSECTIONS AND INJURY 

SEVERITY 

3.1 Introduction 

As mentioned in the opening paragraph of the document that in spite of the lower prevailing 

speeds, compared to freeways/expressways, arterials experience a significant proportion of 

severe/fatal crashes. For example, arterials account for sites of 57% fatal crashes in Florida 

(NHTSA, 2005). Safety on an arterial corridor may be affected by crash patterns on two 

seemingly distinct roadway elements; intersections and the segments between the intersections. 

A study by Abdel-Aty and Wang (2006) demonstrated spatial correlation between crash patterns 

belonging to successive signalized intersections on an urban arterial. It indicates the need to look 

at sequence of signalized intersections along a corridor rather than analyzing each intersection as 

an isolated entity. For such an approach crashes on arterial segment(s) joining consecutive 

intersections would also be critical part of the analysis. There is a potential for achieving better 

understanding of crash patterns on arterials if the corridors are studied as a whole instead of as 

disjointed parts (i.e., intersections and segments separately).  

 

An important issue to be addressed for understanding corridor safety as a whole is the difference 

between the intersection and segment crash patterns, especially as it relates to injury severity. 

There are significant variations in the injury severity patterns that may be partially explained by 

the separation of crash location from intersections. For example, Abdel-Aty et al. (2006) found 
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that the prevailing types of fatal or severe crashes at intersections are mostly angle and left-turn 

crashes while those on roadway segments farther from intersection are mostly fixed object 

collisions. Hence, if one observes crashes only at the physical area of intersections; crashes 

would involve higher proportion of angle and/or left turn crashes which tend to be more severe. 

However, as the definition of the intersection is changed to include some area around it (i.e., the 

influence area for an intersection is defined); rear-end and other groups of crashes would be 

included in the sample and the severity patterns may be altered.  

 

The influence area for an intersection is characterized by the distance from the center of the 

intersection along either of the two legs belonging to the corridor under consideration. Crashes 

within this distance from any intersection (signalized or unsignalized) are categorized as 

intersection/intersection-related crashes while the crashes beyond are categorized as segment 

crashes. This study attempts to understand factors associated with crashes and their severity on a 

multilane arterial while accounting for the variations resulting from location of the crashes 

relative to intersections. It is accomplished by developing different models for different distance 

thresholds used to define the influence area for intersections. The methodology used in this study 

also accounts for the correlations between the factors explaining injury severity and the crash 

location (intersection vs. segment) at a particular threshold. The approach adopted herein 

provides a better understanding of relationship between crash location’s relative proximity to 

intersections and severity outcome. It may also improve the understanding of how changes made 

to an intersection affect the neighboring segments of the arterial.   

 



 

 

26

Crash data from SR-816 corridor in Broward County, Florida are used is this study. The crashes 

belonging to intersections are separated from crashes belonging to arterial segments by defining 

a binary variable whose definition changes based on the specified intersection influence distance. 

Injury severity of crashes is defined as an ordinal variable. Detailed characterization of these two 

variables is provided in the next section along with particulars of the solution approach and 

modeling methodology. The section providing details of the data used for analysis is then 

followed by the results and conclusions of this investigation.   

 

3.2 Solution Approach and Modeling Methodology 

Relationships between the following variables are of interest in this study:  

1. A 3-level ordinal variable representing the injury severity. The variable is created from 

the injury severity information available from the Crash Analysis and Reporting (CAR) 

database of Florida Department of Transportation (FDOT).  

2. A binary variable representing crash location; with its value being ‘1’ for crashes which 

occur within the threshold influence distance of an intersection (intersection/intersection-

related crashes) and ‘0’ for crashes that occur outside this influence distance (segment 

crashes).  In this study, the influence distance (taken from the center of the intersection) 

would be varied in 50 ft. increments on arterial corridors. Hence, there would be multiple 

binary variables that would distinguish between crashes based on their location (i.e., 

intersection and non-intersection crashes).   
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An ordered probit modeling framework would be used for the first variable since injury severity 

levels are naturally ordered. Ordered probit modeling has been applied to injury severity in 

several studies by Abdel-Aty (2003), O’Donnell and Connor (1996), and Duncan et al. (1999). 

However, none of these studies, except for Abdel-Aty (2003), compared the factors that affect 

injury severity at different roadway locations. Abdel-Aty (2003) used the ordered probit model to 

study severity of traffic crashes at roadway sections and at signalized intersections. The analyses 

for these roadway elements (segments and intersections), however, were carried out independent 

of each other.  

 

In the preliminary analysis chi-square tests for association between injury severity and the binary 

variable(s) representing crash location suggested a possible association between them. 

Furthermore, the nature and strength of association changes as the definition of the variable 

representing crash location is varied. The results from these tests are later discussed in detail. 

The straight forward way to assess the impact of crash location (i.e., intersection) on injury 

severity would be to use the binary variable(s) representing crash location as an independent 

variable in the ordered probit model for injury severity. However, this binary variable would be 

related with the variables generally used in the model for the injury severity. For example, the 

crashes under rainy conditions are less likely to occur right at the intersection compared to the 

roadway segment influenced by intersections. Similarly, left-turn or angle crashes are more 

likely to occur within the physical area of the intersection (compared to segments) and they are 

also likely to be more severe. To avoid the confounding effects of other variables it was decided 

that the models for the crash location (binary dependent variable) and the injury severity (ordinal 
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dependent variable) would be estimated simultaneously. Since the location variable may be 

associated with certain variables included in the severity model; its inclusion (i.e., recursive 

specification) would have also led to problems of correlated independent variables, and biased 

and inefficient estimates for the coefficients.  

Simultaneous estimation of the two models would improve the coefficient estimates by 

accounting for the correlations between the unmeasured factors. The difference between 

independent estimation and the simultaneous (bivariate) modeling procedure is that the later does 

not assume the errors for the two models to be uncorrelated. The simultaneous estimation 

procedure also provides the p-value for the statistical test on correlation with the null hypothesis 

being that the correlation coefficient ρ=0.  

 

3.3 Model Formulation 

According to Long (1997) logit and probit models provide very similar results in terms of 

resulting classification and standardized effects for independent variables. However, 

convergence is more likely for bivariate probit models, even though it may require more 

computational time (Indiana University (2007)). The model specification for the simultaneously 

estimated probit model equations is as follows (Green (2003)):  

 

Equation 3-1 
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Where X1= Vector of independent variables explaining the roadway location of the crash and   

X2
 = Vector of independent variables explaining the crash injury severity. 

Also, note that the disturbances ε1 and ε2 have the following specifications: 

E[ε1 | X1, X2] = E[ε2 | X1, X2] = 0, 

Var[ε1 | X1, X2] = Var[ε2 | X1, X2] = 1, 

Cov[ε1, ε2 | X1, X2] = ρ 

 

Y1
* and Y2

* are unobserved, latent, and continuous variables. The binary and ordinal scale 

dependent variables, Y1 (Crash location) and Y2 (Injury severity) are observed when the 

respective latent variables Y1
* and Y2

* fall in certain ranges. The two independent variables 

observed as discrete categories (i.e., Y1 and Y2) are specified below: 

 

Equation 3-3 
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Equation 3-3 (specified as a binary probit model) relates crash location with other crash 

characteristics; while Equation 3-4 (specified as an ordered probit model) relates injury severity 

with the independent variables. This formulation allows us to relate the crash location with the 

injury severity without confounding the effects of independent variables that relate to both crash 

location and injury severity. Detailed descriptions of the variables constituting the vectors X1 and 

X2 are provided in the next section (See Table 3-1).  

 

The estimates for model coefficients may be obtained using maximum likelihood estimation. The 

likelihood function maximized to obtain the model coefficients incorporates the effect of 

correlation between the error terms. The coefficients for the models specified above (i.e., vectors 

β1, β2 along with (ρ(u1, u2)) were estimated using SAS (2007). The details of maximum 

likelihood estimation process may be found in by Greene (2003). 

 

Multiple sets of simultaneous models (corresponding to different thresholds on influence 

distance) based on the above specification would be estimated for the corridor. The only 

difference between sets of simultaneous models would be the definition of Y1 (i.e., Crash 

location variable). The definition of Y1 would in turn depend on the threshold selected to 

separate intersection crashes from segment crashes. The details on these thresholds and the 

variables used in the analysis are provided in the next section.  
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3.4 Data Preparation 

The crash data used in this study are from a 9.72-mile corridor of arterial SR-816 in Broward 

County, FL. Both signalized and non-signalized intersections are considered in this study. The 

intersection density (intersections per mile) for the corridor is 11.32. The total number of crashes 

involving at least a possible injury on this multilane arterial over the four year period (2002 

through 2005) was 1575. 11.17% of these crashes were either fatal or involved incapacitating 

injury. The crash data for the above corridor were downloaded from FDOT’s CAR database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

32

Table 3-1 Variable Description 

Variable Categories Description 
Independent Variables 

Traffic Condition 
(Based on time of day/day 

of week)  

MPW Morning peak traffic condition on weekday (7 a.m. – 9.30 a.m.) 
APW Afternoon peak traffic condition on weekday (4 p.m. – 7 p.m.) 
FSN Friday or Saturday night traffic condition (Friday 10 p.m.  –

Saturday 3.30 a.m.) 
OP Off peak traffic condition 

Sectional AADT 1* Section AADT <= 52,000 
2* 52,000 < Section AADT <= 58,000 
3* 58,000 < Section AADT <= 64,500 
4* Section AADT > 64,500 

Road Surface  Binary (1 = dry surface, 0 = all other cases) 
Lighting  Binary (1 = day time, 0 = night time) 
Weather  Binary (1 = clear, 0 = all other cases) 

Road Curvature  Binary (1 = straight, 0 = curve) 
Road Surface Type  Binary (1 = blacktop, 0 = all other cases) 

Road Condition at time of 
Crash 

 Binary (1 = No defects, 0 = all other cases) 

Vision Obstruction  Binary (1 = no obstruction, 0 = all other cases) 
Alcohol/Drug involvement  Binary (1 = No, 0 = Yes) 
Pavement Surface Width  Width of the pavement (Continuous) 

Shoulder Width1   Width of the shoulder closest to the travel lane (Continuous) 
Shoulder Width2  Width of the shoulder farthest from the travel lane (Continuous) 

Median Width  Width of the median (Continuous) 
Speed Limit  Maximum posted speed limit (continuous) 

Dependent Variables 
Crash Location 

(Y1; location_D) 
1 Crashes within the ‘D’ ft. from the center of intersection 
0 Crashes beyond ‘D’ ft. from the center of  intersection 

Injury Severity 
(Y2) 

2 Crashes resulting in incapacitating injuries or fatalities  
1 Crashes resulting in non-incapacitating injuries  
0 Crashes resulting in possible injuries 

*The AADT values from various sections of the corridor have been split into four quartiles  

 

Before proceeding further some data issues require clarification.  The issues mainly relate to the 

recorded crash location and the definition of influence distance. In the database used for this 

study each crash is assigned to an intersection (node) nearest to its location. The information on 

the distance of crash location from the node representing center of the intersection is also 

available in the database. Through a careful review of this information; it was noticed that a 

significant number of crashes are reported to have occurred at milepost associated with the 
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nodes. In other words, the distance between crash location and the center of the intersection is 

reported as 0 ft. It does not necessarily mean that all these crashes occurred at the mid-point of 

the intersection.  Significantly large number of such crashes essentially implies that most crashes 

that occur inside the physical area of the intersection are reported to be 0 ft. from the center of 

intersection. Also, note that in the state of Florida physical area of the intersection is by default 

considered to be the area within 50 ft. from the center of the intersection. Hence, some of the 

crashes that are reported to be within 50 ft. of the node (representing the intersection) in the 

database may be very close to the Stop bar.  

 

These crashes, while not strictly at intersection, would most likely be influenced by it. Therefore, 

the first two thresholds on influence distance (to separate intersection crashes from non-

intersection crashes) were chosen to be 0 ft. and 50 ft., respectively. The threshold of 0 ft. means 

that the crashes within 50 ft. from the center of the intersection are classified as intersection 

crashes (i.e., only those crashes within the physical area of the intersection). For the model 

corresponding to D=50; the crashes that have occurred within the physical area of the 

intersection and those that have occurred within 50 ft. of the stop bar have been classified as 

intersection crashes. The successive thresholds were also chosen to be in 50 ft. increments, i.e., 

100 ft., 150 ft., and so on.  As mentioned earlier, this threshold defines one of the two 

simultaneously estimated dependent variables (Y1; See previous section).  

 

It must be acknowledged that the selection of thresholds at 50 ft. increments is somewhat 

arbitrary. Therefore, the results from the sets of simultaneous models estimated using different 
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thresholds need to be interpreted in relative terms. For example, in case of the models with 

threshold at 100 ft.; crashes closer to intersection are treated as intersection/intersection related 

crashes compared to the set of models with threshold at 150 ft. Table 3-1 lists the independent 

(regressors) and dependent variables (responses) used in the study. The last row of Table 3-1 

represents the crash location as binary variable “location_D” which would be ‘1’ for crashes 

within ‘D’ ft. from the center of the intersections.  

 

Crashes with fatalities and incapacitating injuries are combined into one category (of variable Y2 

representing injury severity) for two reasons; first, the relatively small frequency of fatal crashes 

compared to other injury severity levels could create problems in the analysis. For example, the 

chi-square tests on contingency tables may not be valid due to low expected cell-frequency. The 

second reason is that the crashes that involve incapacitating injury could easily have been fatal 

and vice-versa depending on the vulnerability of the subjects involved.  Also, note that the 

variables shown in Table 3-1 are gathered from the ‘long-form’ (complete crash reports) filled 

out by law enforcement authorities in Florida. The information on crashes involving no injury is 

likely to be incomplete for this set of crashes (Abde-Aty and Keller, 2005; Yamamoto et al., 

2008). Therefore, only crashes that at least involve a possible injury are included in this study 

and the injury severity is categorized as a 3-level ordinal variable. 

 

Note that some of the binary variables shown in Table 3-1 had in fact more levels in the original 

database. Some of the categories belonging to these variables were quite infrequent and were 

therefore combined with each other. Also, note that the AADT of the sections was divided into 
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four quartiles (such that they have close to 25% cases in each of the categories). In the analysis 

this variable is used as a nominal variable and not as an ordinal variable. The reason is that the 

categorization may not follow the natural order in terms of the relationship of AADT with injury 

severity (Y2). All the other variables shown in the table are self-explanatory.  

 

3.5 Analysis and Results 

As mentioned earlier, the association between the ordinal variable representing crash injury 

severity and the binary variable(s) representing the crash location was first examined with chi-

square tests. To reliably assess the strength of this association using chi-square test; each cell of 

the contingency table is required to have a minimum expected frequency. With the increase in 

the influence distance (starting from 0 ft.) more crashes get assigned as intersection crashes and 

the number of crashes assigned as non-intersection or segment crashes is reduced. Beyond a 

certain influence distance the frequency of segment (or non-intersection) crashes becomes too 

low for the chi-square test statistic to be credible. Therefore, a maximum allowable influence 

distance was chosen such that at least 10% of all crashes were assigned as non-intersection 

crashes. The maximum allowable threshold influence distance for SR-816 was found to be 200 

ft. using this criterion. Limiting the threshold distance to 200 ft. also helps in reducing the 

chances of having influence area of one intersection overlap with the other. The chi-square test 

statistics and corresponding p-values for testing associations between Y1 and Y2 (with definition 

of Y1 varying based on influence distance thresholds; D=0 ft. through D=200 ft.) are reported in 

Table 3-2.  
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Bivariate probit models, formulated earlier in the chapter, were then developed for the injury 

severity (Y2; ordered probit) and the location variable (Y1; binary probit). The bivariate 

formulation does not assume that the errors in the models being simultaneously estimated are 

uncorrelated. The significance of correlation coefficient (ρ) is tested and reported along with the 

estimated coefficients (and their significance) for independent variables included in the two 

models. The correlation essentially accounts for the common factors associated with both 

dependent variables that are not explicitly included in the models. Last column of Table 3-2 also 

provides the estimates for ‘ρ’ and its significance. Table 3-3 shows the detailed estimates of 

variables coefficients and their significance along with error correlation coefficient estimates 

shown in last column of Table 3-2. 

 

Table 3-2 Chi-square statistics and error correlation coefficient estimates 

Influence Distance (ft) Chi-Square (p-value) 
(from Contingency tables) 

Correlation coefficient ‘ρ’ (p-value) 
(from bivariate probit models shown 

in Table 3) 
0 4.369 (0.113)  0.053 (0.172) 

50 1.354 (0.508) -0.046 (0.266) 
100 1.285 (0.526) -0.055 (0.201) 
150 7.889 (0.019) -0.135 (0.005) 
200 5.950 (0.051) -0.120 (0.016) 

 

It can be observed in Table 3-2 that the significance trend for ‘ρ’ at various intersection influence 

distance is similar to the corresponding significance trend of the Chi-square statistic. In Table 

3-2 and Table 3-3 cells with statistically significant parameters (at 90% confidence level) have 

been highlighted. It is worth mentioning that the values of μ (for converting the estimated latent 

continuous variable into the categorical injury severity) were also estimated for each of the five 

injury severity models and are provided in Table 3-3.  
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Table 3-3 Five simultaneous models for the crash location and injury severity levels on SR-816 (D=threshold influence distances in ft.) 
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The significance of ‘ρ’ changes as the influence distance for defining crashes on intersection and 

segment varies from 0 ft. through 200 ft. For the models developed for intersection influence 

distances 0, 50, and 100 ft. the ‘ρ’ values is insignificant. It indicates that error terms in the two 

models are not significantly correlated with each other. However, the correlation coefficient 

becomes significant beyond 100 ft. influence distance. Table 3-2 also depicted a similar trend for 

the significance of the Chi-square test statistic. This in effect means that on average when 

intersection crashes are defined such that they include a smaller influence area (within about 100 

ft. of intersections for this corridor); severity on the arterial crashes may be modeled independent 

of crash location.  It is worth mentioning again that the 100 ft. is the distance from the center of 

the intersection. Also, note that this distance may also vary from corridor to corridor depending 

on intersection density and traffic patterns. As mentioned earlier due to data constraints we have 

not been able to develop models for D > 200 ft. and beyond. It may be inferred that the 

correlation would probably have been significant. 

 

Form this point forward the discussion would be about the factors that were found to be 

significant for the two simultaneously estimated models at various threshold distance. The crash 

location (Y1) model(s) for various threshold values (D) show what factors help discriminate 

between intersection crashes and segments crashes. The crash injury severity (Y2) model(s) for 

various threshold values (D) in Table 3-3 show the factors that relate significantly with the 

ordinal variable. Figure 1 depicts the significant parameters for the ordinal crash injury severity 

model in the form of a bubble plots. The size of the bubbles in the plots reflects the relative 

significance of these parameters with respect to each other. Also, note that the bubbles within a 
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plot may be compared horizontally but not vertically. The plot on the left shows the effect of the 

factors which decrease the severity of the crash (i.e., negative coefficients) and the plot on the 

right depicts those which increase the severity (i.e., positive coefficients).   

 

Factors with negative coefficients

-50 0 50 100 150 200 250

Influence Distance

Afternoon peak weekday Black top road surface
Increasing median width No alcohol/drug use

 

Factors with positive coefficients

-50 0 50 100 150 200 250

Influence Distance

Roadway width Speed limit AADT (first quantile) AADT (second quantile)
 

Figure 3-1 Significant parameters for crash injury severity model 

 

Figure 3-1 and Table 3-3 illustrate that weekday afternoon peak period conditions (APW; see 

Table 3-1), blacktop pavement surface, and increase in median width decrease the severity of the 

crashes on SR-816 (LHS of Figure 3-1). No alcohol/drug use also has the same effect which 

essentially means that alcohol/drug involvement increases the severity of the crashes. During 

afternoon peak periods the speeds are generally lower due to congestion; therefore crashes are 

likely to be less severe. Likewise, higher median width may reduce the chances of severe 

crossover head-on collisions. It explains the significantly negative coefficient for median width. 
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Similar result for severity of peak-hour crashes at intersections was found by Abdel-Aty and 

Keller (2003). Presence of median was also found to reduce the severity of crashes in that study. 

 

Blacktop surfaces are found to negatively affect severity in all five models (D=0 ft. through 

D=200 ft.). Note that this variable is also significant for separating intersection vs. segment 

crashes when intersection crashes include the crashes that occur within 150 ft. and 200 ft. of the 

intersections (Models for D=150 ft. and D=200 ft.  in Table 3-2; Also see Figure 3-2). For other 

three values of ‘D’ (defining intersection crashes as only those that occur within 0, 50, and 100 

ft. of intersections) this variable was not significant in the crash location model. These crashes 

are not only less severe (Abdel-Aty and Keller (2003), Jianming and Kockelman (2004)) but are 

also likely to be more frequent in the segment within 150-200 ft. from intersections. The findings 

also seem to corroborate with one of the studies that found that asphalt pavements may lead to 

higher frequency of peak period crashes (Abdel-Aty et al. (2006)). Since crashes on blacktop 

surfaces with asphalt base seem to have higher frequencies during peak periods and within 150-

200 ft. of intersection; it indicates that these pavement surfaces might increase the odds of rear-

end crashes. It may in turn be the reason for the negative coefficient of the variable representing 

blacktop surfaces with asphalt base in the injury severity model (since rear-end crashes tend to 

be less severe).   

 

It was also found that increases in the roadway width and the speed limit increase the severity of 

the crashes. AADT below the median value (both 1st and 2nd Quartiles) are also positively 

associated with the severity (RHS of Figure 3-1). Among the factors positively influencing injury 
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severity, lower AADT is the most significant. It is also interesting that the effect of roadway 

width becomes more profound when the influence distance is greater than zero.  

 

Figure 3-2 depicts significant parameters for five binary crash location models each estimated 

simultaneously with the corresponding injury severity model. The coefficients of the model were 

provided in Table 3-3. The size of the bubbles once again reflects the relative significance of the 

parameters. Note that the some parameters have no corresponding bubble at certain values of D 

(i.e., intersection influence distances). It represents that if crashes at intersections are defined 

based on this influence distance then the corresponding parameters does not contribute in 

discriminating the crash location. In Figure 3-2 the plot on the left shows the effect of the factors 

which decrease the likelihood of a crash being within a particular distance from intersection 

(negative coefficients) while the plot on the right depicts those which increase it (positive 

coefficients).  

Factors with negative coefficients

-50 0 50 100 150 200 250

Influence Distance

Afternoon peak weekday Daylight

Factors with positive coefficients

-50 0 50 100 150 200 250

Influence Distance

Dry surface condition Black top road surface No obstruction of vision
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Figure 3-2 Significant parameters for crash location model 

 

From Figure 3-2 and Table 3-3 it may be observed that during the afternoon peak period on 

weekdays the likelihood of a crash occurring within 50 ft. of the intersection is less compared to 

the off-peak traffic conditions. Note that while this difference is insignificant at influence 

distances of 100, 150, and 200 ft. (no corresponding bubble in LHS of Figure 3-2); the p-value is 

much closer to 0.10 (See Table 3-3). This difference between afternoon peak weekdays (APW; 

See Table 3-1) and off peak (OP; See Table 3-1) conditions is insignificant if one examines the 

relative likelihood of a crash occurring within the physical area of an intersection (influence 

distance=0 ft.). It is probably because during the afternoon peak hours, drivers expect congestion 

and expect to slow down/stop as they approach an intersection. It reduces the likelihood of 

crashes that prevail in the vicinity of intersections. The modeling results also show that the 

variable representing normal daylight is significant in separating crashes at intersection and 

segments regardless of the specified influence distance. It should be noted, however, that the 

significance is more profound if the influence area of intersections is defined as 50 and 100 ft. 

While it is hard to conclude definitively the smaller coefficient of this variable at influence 

distances D=150 ft. and D=200 ft. might be caused by the dilemma zone phenomenon. 

 

Among the variables with positive coefficients (RHS of Figure 3-2) blacktop road surface is 

significant for separating intersection crashes from segment crashes if the influence distance is 

150 ft. or 200 ft. The implications of this result were discussed earlier. Dry surface condition also 

augments the likelihood of a crash to occur at the physical area of an intersection or within 50 ft. 
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of it.  It may also be observed that the significance is more profound for the physical area of the 

intersection compared to the case when the influence distance is 50 ft. It can essentially be 

interpreted as follows: if the influence area of the intersection is increased then the weather 

conditions’ ability to discriminate between intersection and segment crashes diminishes. It might 

be due to wet weather crashes that are more prevalent on approaches to intersections. A result 

that was not clearly understood was the variable representing vision obstruction was found to be 

significant in identifying intersection crashes from segment crashes with the influence distance 

set at 100 ft. The variable was not significant at any other influence distance and p-values were 

not even on the margin. This might be a peculiar issue with the corridor under consideration such 

as a few intersections with vision obstruction problems along the corridor or the demographics of 

Broward County with a sizeable proportion of older drivers.  

 

3.6 Concluding Remarks 

Understanding safety on urban arterials is a complex problem since it is affected by interactions 

between traffic patterns on intersections and segments connecting them. Implementation of 

certain safety improvements at intersections may lead to unanticipated changes in 

safety/operation performance of nearby segments or vice versa. Hence, an improved 

understanding of safety may be achieved if consecutive intersections on arterial corridors are 

examined as a whole along with the segments connecting them instead of as isolated entities. 

Analysis presented in this chapter is an effort in that direction which focuses on injury outcomes 

of crashes. 



 

 

44

 

The analysis is carried out by simultaneous estimation of models for crash location and injury 

severity at five different values of intersection influence distances. These values are varied from 

D=0 ft. through D=200 ft. at 50 ft. increments. The value of influence distance (D) essentially 

represents the distance from center of intersection along the corridor, up to which the crashes are 

categorized as intersection related. Simultaneous estimation of crash location and injury severity 

models allows us to account for correlation between errors of the two models. The correlation is 

likely the result of common unknown factors that affect both these variables but are not 

explicitly included in either model.  

 

The model for the crash location variable indicated that during peak hours crashes are less likely 

to occur at or in the vicinity of intersections. It was also found that increase in the pavement 

surface width and speed limits expectedly increase the severity of the crashes. Lower AADT 

values are also positively associated with the severity. It may be inferred that certain conditions 

that make the task of driving easier (larger higher roadway width, low AADT) can lead to 

increased severity of crashes.  

 

It should be noted that the results obtained in this study may be specific to the corridor under 

consideration. It may be expected, however, that similar results (for example, the influence 

distance threshold beyond which the error correlation coefficient becomes significant) would be 

obtained from corridors with comparable intersection density. The results also suggest that for 

corridors with higher intersection density (i.e., more closely spaced intersections) the errors may 
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not be correlated and hence crash location and injury severity may be modeled independent of 

each other. This inference is based on insignificant correlation between errors for the 

simultaneous models developed corresponding to D=0, 50, and 100 ft.  On the other hand, 

arterials on which intersections are fewer and far between; injury severity models for the corridor 

need to account for crash location (i.e., intersection vs. segment crashes). 

 

 

 

 

CHAPTER 4. RULES TO ASSIGN CRASHES 

4.1 Background 

Signalized and un-signalized intersections and the segments connecting them are the three basic 

elements of any given arterial. The common practice is that crashes have been assigned to these 

elements based on the crash location. For the present study signalized intersections will be 

referred to as intersections while as un-signalized intersections will be considered as a type of 

access points. An access point is any street that is intersecting the arterial and has a control other 

than a signal. It could be a county road or a private driveway. Most states in the country have in 

their jurisdiction an influence area for an intersection. For example in the state of Florida, 

crashes that occurred within 250 ft of any intersection are referred to as intersection related 

crashes (Abdel-Aty & Wang, 2006 and Wang et. al 2006). The problems of having an influence 

area to assign crashes could be:  
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1. Having an influence distance has its problem of wrongly classifying some segment 

crashes to intersection related.  

2. Das et al. (2008), showed by the method of simultaneous estimation that if the influence 

distance varied the crash characteristics associated with severe injuries also varies. This is 

due to the fact that the farther we move away from the center of an intersection, more 

crashes related to the connecting segment comes into play. Wang et al. (2008) used 

frequency modeling for crashes with fixed as well as varying influence distance and 

found different set of significant factors. These very recent studies show that the concept 

of using influence distance for assigning crashes to the roadway elements could be 

erroneous. 

 

Apart from the above problems associated with the influence distance, there are other problems 

that are related to the ways crashes are reported. Most of time the police officers do not do an 

actual measurement of the crash distance. The crash distance, which also decides the crash 

location, is the distance of the crash from the center of an intersection to the exact location. Also 

the distance is sometimes taken from the stop bar on the arterial. In addition to these, Florida 

State has a 50 ft default intersection size. Since not all intersections are of the same size, no 

matter how good the officer is at guessing the location indicated in the crash report is a very 

rough approximation. Hence using the influence distance to classify intersection related crashes 

is not recommended.  
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There is presently no standard guideline for un-signalized intersections such as influence 

distance in case of signalized intersections. If the “site location” is used to determine the location 

of a crash, the only access related crashes that could be identified are those with site location 

value of ‘driveway access’.  

 

For the present corridor level analysis it is critical to know how to assign a crash to its 

appropriate roadway element. The goal is to assign crashes to segments, intersections or access 

points. Police officers often report the crashes that have occurred at an un-signalized intersection 

as intersection related. This makes the site location parameter a weak indicator of assigning 

crashes. Using it alone to assign crashes could lead to erroneous results. This lead to an 

investigation to find out which other crash record parameters could be used to assign the crashes 

correctly. A closer study of crash reports revealed that traffic control in combination with the site 

location did a superior job in identifying the roadway element to be assigned to correctly. Hence 

the method of assigning a crash based on crash characteristics. However in certain cases the 

above two crash parameters may not be able distinguish crashes that are related to intersections 

or access points. In those cases it is necessary to check whether the particular node is signalized 

or un-signalized. Node generally refers to any type of intersection, both signalized as well as un-

signalized.  

 

Based on the detailed study of 377 crash reports certain rules, in the form of if-then-else 

statements, were developed to assign the crashes correctly. The rules had an overall accuracy of 

93.63 % as compared to 57.82 % accuracy obtained when only site location is used.  
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In the sections that follow details for each rule will be given which will enable the reader to not 

only understand the rules but also learn as to how the rules were developed. The numeric 

representation of the parameters: ‘site location’ and ‘traffic control’ have been used. Table 4-1 

and Table 4-2 provide the meaning of each numeric depiction for the above two parameters. 

 

 

 

 

Table 4-1 Legend for ‘Site Location’ 

Site Location Numeric representation 
Not at Intersection / RR / Bridge 1 

At Intersection 2 
Influenced by Intersection 3 

Driveway Access 4 
Railroad 5 
Bridge 6 

Entrance Ramp 7 
Exit Ramp 8 

Parking Lot – Public 9 
Parking Lot – Private 10 

Private Property 11 
Toll Booth 12 

Public Bus Stop Zone 13 
All Other 77 

 

Table 4-2 Legend for ‘Traffic Control’  

Traffic Control Numeric representation 
No Control 1 

Special Speed Zone 2 
Speed Control Sign 3 

School Zone 4 
Traffic Signal 5 

Stop Sign 6 
Yield Sign 7 
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Flashing Light 8 
Railroad Signal 9 

Officer / Guard / Flag person 10 
Posted No U-Turn 11 
No Passing Zone 12 

All Other 77 
 

It is important to note several observations in Table 4-1. The author would like to bring to notice 

of the reader the site locations with values 1, 5 and 6. As can be observed the site location value 

of 1 relates to crashes not at intersection or railroad or bridges. However the practice is such that 

crashes at railroads and bridges are almost always have a site location value of 5 and 6 

respectively which exclusively identifies crashes related to railroad and bridges. Apart from that 

crashes near railroad which have site location value of 1 will have traffic control value of 9. 

Similarly the author would also like to bring the discussion to site location values of 4, 9, 10 and 

11. They all represent access related crashes. However the data will almost never have any 

crashes with site location values of 9, 10 or 11 since they are all driveway related and are 

included under site location value of 4. Site location value of 12 which represents toll booth is 

not a part of the present study.  

 

4.2 Site location 1: Not at Intersection / RR Xing/ Bridge 

Based on the site location value of 1 alone one would assign all the crashes to segments. It is true 

for crashes where the traffic control is 1, 2, 3, 4, 10 or 12. However when the traffic control is 5, 

6, 7, 8, 9 or 11, then the crashes do not always occur due to segment characteristics. Given that 

site location is 1 and, for example, the traffic control is 5 then a closer look at the crash reports 

reveal that those crashes occurred due to signalized intersection related causes. Similarly when 
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the traffic control is 6 an investigation into the crash reports show that those crashes are related 

to un-signalized intersections with a stop sign (‘access points’ in our case). The above statements 

are exemplified in Figures 4-1 through 4-4. Figure 4-1 and Figure 4-2 are from the crash report 

#769122280 where the site location is 1 and the traffic control is 5. In this particular instance the 

‘at fault’ driver rear-ended the stationary vehicle in front view. The stationary vehicle was 

stopped at an intersection and was waiting for the red light to turn green. Even though it has been 

classified as a ‘not at intersection’ crash, this crash definitely is related to the signalized 

intersection and need to be assigned as such.  

 

 

Figure 4-1 Crash narrative by the police officer 

 

Figure 4-2 Graphical representation of how the crash had or may have occurred 



 

 

51

 

Likewise Figure 4-3 and Figure 4-4 are from the crash report #750894030 where the site location 

is 1 and the traffic control is 6. The description and the illustration clearly indicate that the crash 

is related to the un-signalized intersection rather than the segment. The ‘at fault’ driver was 

getting out of a driveway and while attempting to make a left turn came in collision course of the 

other vehicle, resulting in an angle crash.  

 

 

Figure 4-3 Crash narrative by the police officer 

 

Figure 4-4 Graphical representation of how the crash had or may have occurred 
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Hence it is now clear that the site location only should not be used to assign crashes to the 

different roadway locations. At least a combination of site location and traffic control is required 

to correctly assign the crashes where the site location is 1.  

 

Figure 4-5 is the flowchart of how a crash is to be appropriately assigned to one of the three 

roadway locations when the site location is 1. The flow chart is essentially a set of if-then-else 

statements which can conveniently be understood. After all the checks for the traffic control are 

made the crashes are assigned to the correct roadway component.  
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Figure 4-5 Rules to assign crashes to roadway elements based on Site Location = 1 

 

4.3 Site location 2: At Intersection 

The site location value of 2 essentially means that the crash has taken place inside a signalized 

intersection. However, as mentioned earlier, the way reporting is done a lot of crashes that have 

occurred in un-signalized intersections also are reported as intersection crashes. Therefore for 

these crashes some new parameter apart from site location and traffic control have to be taken 

into account to distinguish signalized intersection crash and un-signalized intersection crashes. 

Start 

Site Location = 1 

Is Traffic control 

= 1 or 2 or 3  

or 4 or 10 or 12  

Is Traffic control 

= 6 or 7 or 11 ? 

Is Traffic control 

= 5 or 8 or 9 ? 

Roadway Location  

= Segment 

Roadway Location  

= Intersection 

Roadway Location  

= Access Point 

Stop Stop Stop 



 

 

54

Here the node information, i.e. whether the crash is signalized or un-signalized is used to assign 

the crashes to intersections or access points. That particular variable is not necessary for traffic 

control values of 5, 6, 7, 8, 9 or 12 where there was found to be no conflict. Figures 4-6 through 

4-9 will illustrate how the conflict may arise and thus support the use of the new binary variable. 

Figure 4-6 and Figure 4-7 of crash report #719651960 indicate that it is an access related crash. 

The combination of site location (= ‘2’) and traffic control (= ‘1’) alone cannot help resolve the 

misclassification. Hence there is a need to know the signal information of that particular node.  

 

 

Figure 4-6 Crash narrative by the police officer 

 

Figure 4-7 Graphical representation of the crash had or may have occurred 
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 Figure 4-8 and Figure 4-9of the crash report #719651790 clearly point out that the crash is a 

signalized intersection crash. The site location is 2 and the traffic control is 1. Hence by just 

observing the site location or the simple combination of site location and traffic control variable 

we can correctly assign some of the crashes but not most of it. Hence the node check variable is 

important.  

 

 

Figure 4-8 Crash narrative by the police officer 

 

Figure 4-9 Graphical representation of how the crash had or may have occurred 
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Figure 4-10 and Figure 4-11 will provide an example for the site location value of 2 where the 

node information is not necessary and the simple rules may be applied. The crash report 

#754075840 has the traffic control value of 5, i.e. traffic signal and this is a clear example of a 

signalized intersection related crash.  

 

Figure 4-10 Crash narrative by the police officer 

 

Figure 4-11 Graphical representation of how the crash had or may have occurred 
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Similarly when the traffic control is 6 i.e. stop sign the crashes are almost always access related. 

Therefore the traffic control value in some cases is sufficient to distinguish between signalized 

intersection crashes and access crashes. However some traffic control values are not discerning 

enough. Figure 4-12 is the flowchart of how a crash is to be appropriately assigned to one of the 

three roadway elements when the site location is 2. After all the checks for the traffic control and 

signalization of nodes are made the crashes are assigned to the correct roadway component. 

 

 

 

Figure 4-12 Rules to assign crashes to roadway elements based on Site Location = 2 
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4.4 Site location 3: Influenced by Intersection 

The site location value of 3 which identifies crashes influenced by intersection site location has 

exactly the same issues as the site location value of 2. Certain values of traffic control are 

capable of correctly assigning the crashes while some others are not. Hence the rules are almost 

similar to those developed for the site location value of 2. Figure 4-13 show the rules for the 

present site location.  

 

 

Figure 4-13 Rules to assign crashes to roadway elements based on Site Location = 3 
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4.5 Site location 4: Driveway Access 

Driveway access related crashes have been assigned to as access related crashes. Earlier in the 

discussion it was mentioned that for the present analysis driveways along with other un-

signalized intersections are access related. In this particular site location most of the crashes are 

related to access points. Except for the cases when the traffic control is 5 or 8 i.e. ‘traffic signal’ 

or ‘flashing light’. The rules are given in Figure 4-14.  

 

 

Figure 4-14 Rules to assign crashes to roadway elements based on Site Location = 4 
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4.6 Site location 5: Railroad 

The site location value of 5 i.e. railroad helps in identifying those crashes which have occurred at 

or near a railroad intersection. The rules for node checking are required for certain traffic control 

values. The rules for correctly assigning the site location are given in Figure 4-15.  

 

 

Figure 4-15 Rules to assign crashes to roadway elements based on Site Location = 5 

 

4.7 Site location 6: Bridge 

The site location value of 6 i.e. bridge helps in identifying those crashes which have occurred at 
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related, however the rules have to be made to correctly assign those crashes that could not have 

been due to the segment.  

 

 

Figure 4-16 Rules to assign crashes to roadway elements based on Site Location = 6 

 

4.8 Site location 7 / 8: Entrance / Exit Ramp 

The site locations for entrance and exit ramps are essentially intersections which could be 

signalized or un-signalized. The traffic control will be used along with the node check procedure 

to assign the crashes correctly to being signalized intersection related or access related. Figure 

4-17 shows the flowchart for the appropriate rules.  
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Figure 4-17 Rules to assign crashes to roadway elements based on Site Location = 7 or 8 

 

4.9 Site location 13: Public Bus Stop Zone 

The site location value of Public Bus Stop zone are segment related crashes with some being 

intersection or access related. The rules are given in Figure 4-18.  
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Figure 4-18 Rules to assign crashes to roadway elements based on Site Location = 13 

 

4.10 Quantitative Validation of the Rules 

As mentioned earlier the rules are based on careful observations of crash reports for different 

combinations of site location and traffic control. Though the rules have not been developed 

through any statistical process a quantitative validation is required so as to not only evaluate how 

good they perform but also to have an estimate as to how much better they are had only the site 
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was assigned to one of the three roadway locations as defined earlier: segments, signalized 

intersections and access points. The rules were developed by analyzing 96 crash reports for 

different combinations of site location and traffic control. This essentially works as a training set 

of crash reports. The rules were then validated using 281 more crash reports. Hence a total of 

377 crash reports were studied to come up with a complete set of rules.  

 

Out of the first 96 crash reports the assigning accuracy without the rules i.e. by using only the 

site location was 53.13 % where as the accuracy using the rules was 87.5 %. Even at the training 

or development stage of the rules we can notice a considerable improvement in the assignment to 

the correct roadway element. The validation crash reports gave an assigning accuracy of 59.43 % 

without the rules and with the rules the accuracy improved to 95.73 %.  The overall accuracy for 

the 377 crash reports was 57.82 % without the rules and 93.63 % with the rules. Hence it can be 

observed that approximately 36 % more crashes are assigned correctly by using the rules than by 

not using them. 
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CHAPTER 5. DATABASES 

5.1 Existing databases 

Florida Department of Transportation (FDOT) has two very comprehensive resources namely the 

Crash Analysis and Reporting (CAR) System and the Roadway Characteristics Inventory (RCI). 

Since we will be investigating severe injury / fatality crashes on Florida’s State Roads we will be 

using the above mentioned databases for our research purpose as they provide all the necessary 

traffic and geometric variables.  

 

5.1.1 CAR 

The CAR has records for all crashes in the state of Florida that required a Florida Traffic Crash 

Report Long Form to be filled out. The crash records have information at levels of crash, vehicle, 

person and citation. This makes the CAR a very exhaustive resource. The records can be viewed 

online by authorized users and can also be downloaded in text format. The particular databases 

from CAR to be used were: 1) The Augmented Detail Extract and 2) Vehicle – Driver – 

Passenger Extract. The former has essentially the crash characteristics associated with roadway 

geometry and environmental conditions. The latter database has driver – passenger information 

for all the vehicles involved in the crash. Both of the databases have 86 variables each. Apart 

from these datasets the CAR also has statistical reports for ‘high crash’ roadway segments across 

the state of Florida. These crash locations (segments) are termed ‘high crash’, and are confirmed 

statistically problematic area, for certain confidence level and minimum number of crashes. The 



 

 

66

default value for the confidence level is 99% and the minimum number of crashes is 8. The 

present study will require us to investigate corridors for the entire state. Therefore setting the 

values of confidence level and minimum number of crashes will require some assumptions, 

which may prove to be incorrect later on. For that reason it was decided to generate those reports 

with all the values set to zero. This also helps to study the crash information on all roadway 

segments across the state. Figure 5-1 given below is the snapshot of the report generated for 

roadway segments.  

 

Figure 5-1 Snapshot of the ‘high crash’ reference report for roadway segments 

 

The column ‘numb’ in the report is a reference number that indicates segments from the highest 

to the lowest with specific criterion. This report also contains average daily traffic, the number of 

crashes, the actual crash rate, the average crash rate, fatalities, injuries, and property damage 

crashes on the particular length of the given segment The actual crash rate (crashes per million 

vehicle miles) is determined by dividing the number of crashes on the segment for the time 

spanned by the analysis by the total vehicle miles for the segment for the year span. It also gives 

information on the roadway design type (urban, sub-urban, and rural). This information will later 

be used to combine continuous roadway segments.  
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5.1.2 RCI 

The RCI has all the essential traffic and geometric information pertaining to State maintained 

roadways. A detailed list of features and characteristics available for the roadways are given in 

the RCI Office Handbook (FDOT, 2007). Among the features that are useful for the present 

study are: functional classification, curvature of roadway segments, type of intersections, etc. 

These characteristics will be integrated with CAR variables for analyses. The RCI data can be 

downloaded from the FDOT mainframe. The RCI database has 107 roadway characteristics for 

each roadway segment.  

 

Apart from these characteristics the RCI website also provides a plethora of reports with 

information that could be used in specific ways. For the present work, lists of roadway segments 

that are part of the multilane arterial segments were downloaded. In addition to it, the entire list 

of signalized intersections was also retrieved from the RCI website.  

 

5.2 Data Preparation 

At the outset it was critical to have a definition of corridor. The FDOT does not have an exact 

definition of corridor. Hence it was critical that we begin the analysis by defining a corridor. 

There were a lot of parameters on which we could have defined a corridor. But the defining 

parameter should be able to make the corridors homogenous in one way or the other. A 

representative state road is comprised of different roadway segments which are typically 

representation of administrative boundaries. Any change in the administrative boundary is bound 
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to affect the lengths of these corridor lengths. Hence the choice of using these managerial 

roadway segments is ruled out as the homogeneity will not be consistent. The other choices on 

which we could start off was the median type. There are essentially two types of physical 

medians: 1) Divided and 2) Un-Divided. Very large number corridors that resulted were less than 

1 mile in length. This is essentially because as an arterial winds it way through the geographical 

area, cutting across various residential areas, the median type changes very frequently. Hence the 

very large number of smaller corridors. Though the method could provide a homogenous section, 

it was unacceptable because of the above mentioned reason. The other parameter that could be 

used was the design type. The roadway design of arterials is essentially of three types: 1) Urban; 

2) Sub-Urban and 3) Rural. The features that distinguish these three types are the drainage type 

and the city limits. The urban roads have a curb and gutter design within city limits or urban 

residential areas. Roads with open drainage but within city limits are categorized as sub-urban. 

However roads with open drainage and outside the city limits are categorized as rural. The 

resulting corridors resulted in more number of longer homogenous sections. However a large 

number of roads were still less than a mile long.  Hence a refinement was made based on the 

design and the city limits. The roadways with urban/ sub-urban design were combined together, 

thus giving rise to section within city limits. The rural roads, outside the city limits, were then 

combined together. Number of sections with length less than one mile reduced. These were later 

removed from further analysis. The reasons to drop these very short length sections were 

twofold: 1) the sectional characteristics will not change much for such short lengths; 2) the total 

number of severe crashes for most of those corridor sections was too few.  
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5.2.1 Clustering 

With the corridors now grouped according to roadway design and city boundaries, the next task 

is analysis. The corridor lengths varied from 1 mile to 78 miles. The wide variation in the length 

justifies the clustering of the corridors based on the length itself. Corridors with similar length 

are more likely to have similar properties. The variations will be similar. Or in other words the 

heterogeneity will be minimized. 

 

At the outset we need to the optimum number of clusters, one of the more difficult tasks in 

cluster analysis, to which the corridors have to be grouped into. In the present study we have 

used the partitioning around medoids (PAM) algorithm to find the optimum number of clusters. 

PAM algorithm operates on the average dissimilarity. According to Kaufman and Rousseeuw 

(1990) the ‘medoid’ is an object of the cluster whose average dissimilarity to all the objects in 

the cluster is minimal. Once the medoids are identified all the objects are assigned to the nearest 

medoid. The objective function is the sum of the dissimilarities of all the objects to the nearest 

medoid. The algorithm terminates when the interchange of an unselected object with an already 

selected object no longer minimizes the objective function. To find the optimum number of 

clusters and also to differentiate a bad cluster from a good one, a set of values called ‘silhouettes’ 

are computed (UNESCO, 2007). The following algorithm shows how one would calculate the 

silhouette value. 

 

Consider any object ‘k’ in the data and let it be assigned to a cluster ‘X’. Let ‘x(k)’ be the 

average dissimilarity of the object ‘k’ to all other objects in cluster X. For any other cluster ‘Y’ 
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different from ‘X’, ‘d(k, Y)’ be defined which is the average dissimilarity of object ‘k’ to all 

objects in ‘Y’. ‘d(k, Y)’ for all clusters ‘Y’ not equal to ‘X’ is computed and the smallest is 

computed. If the minimum is attained in cluster ‘Z’ then ‘d(k, Z) = z(k) and ‘Z’ is the neighbor 

of object ‘k’. The silhouette value, ‘s(k)’ is then defined as:  

 

Equation 5-1  

))(),(min(/))()(()( kxkzkxkzks −=  

 

A silhouette value close to 1 suggests that in-cluster dissimilarity is less than the between 

dissimilarity. A value of 0 suggests that the object could have belonged to either cluster. 

Negative silhouette values, especially those that are close to -1, suggest that the clustering has 

been poorly done. The silhouette values computed then can be used to find the optimal number 

of clusters.  In the present study the optimal number of clusters found by using the PAM 

algorithm was 4.  Once the optimal number of clusters has been defined, we move on to the 

actual clustering. The clusters found are given in Table 5-1.  

Table 5-1 Cluster and respective Range 

Cluster Range (in Miles) 
1 1.009 – 2.89 
2 2.898 – 5.729 
3 5.762 – 10.556 
4 10.644 – 78.293 
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CHAPTER 6. USING CONDITIONAL INFERENCE FORESTS TO 
IDENTIFY THE FACTORS AFFECTING CRASH SEVERITY ON 

ARTERIAL CORRIDORS 

6.1 Introduction 

Approaches to safety on multilane corridors have traditionally been twofold. Brown and Tarko 

(1999), Abdel-Aty and Radwan (2000) and Rees (2007) treated the corridors in totality; while 

Milton and Mannering (1998) and Miaou and Song (2005) divided the corridors into segments 

and intersections. Abdel-Aty and Wang (2006) have shown a spatial correlation between crash 

patterns of successive signalized intersections, which may be attributed to the characteristics of 

the segments joining them.   

 

Though both approaches have worked well for investigation purposes, the issue that still remains 

is how to assign crashes to the segments and the intersections. There is no uniformity in the 

influence area of an intersection among the states. For example, in Florida, all the crashes 

occurring within 250 ft. from the center of an intersection are categorized as intersection related 

crashes, as has been reported by Abdel-Aty and Wang (2006) and Wang et al. (2006). Recently 

Das et al. (2008) showed that proximity only is not the best way to assign crashes. Wang et al. 

(2008) used frequency modeling for crashes with fixed as well as varying influence distance and 

found different set of significant factors. Apart from the above research, it is also of common 

knowledge that the way the crashes are reported varies among different administrative units. The 
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author investigated several crash reports and came up with an innovative approach to assign 

crashes, the details of which are given in CHAPTER 4.  

 

As previously mentioned, it is important not only to find the contributing factors but also to 

improve on the methodology adopted. Pande and Abdel-Aty (2008) in their work on association 

rules point out that data mining techniques remain underutilized for analysis of crash. The 

underutilization is especially noteworthy since most studies use observational data collected 

outside the purview of an experimental design. Simple data mining tools like classification and 

regression trees have traditionally been used to identify variables of importance in safety studies 

(Pande and Abdel-Aty (2008)). A decision tree, with all its simplicity and handling of missing 

values, can be very unstable. However, if instead of one tree, an ensemble of trees (commonly 

referred as forest) is used, the outputs become much more stable. The robustness of the forests 

makes them a better choice than the use of single trees. In this regard, Random Forests, 

developed using the Classification and Regression Trees (CART) algorithm, have been used by 

the authors (Abdel-Aty et al. (2008)) recently to identify variables of significance and then 

develop neural network classifiers. However, the method has been shown to have selection bias 

as shown by Strob et al. (2007). The selection bias is in favor of variables which are continuous 

or have higher number of categories. At the root of this selection bias is the application of ‘Gini’ 

index criterion to split a node (while building the tree) as well as for variable selection (generally 

based on the frequency a variable was chosen for the split). Details of the ‘Gini’ index criterion 

and the resulting bias have been provided in the ‘Modeling Methodology’ section. Hence, in this 

study conditional inference trees, developed by Hothorn et al. (2006), and their forests have been 
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used for the purpose of variable selection. The author is of the belief that the application of this 

new methodology will improve traffic safety research. Details of how this algorithm is different 

(and better suited for the application at hand) than the CART have been given in the 

methodology section.  

 

The author included new variables like ‘element’, in this study, which assigns crashes to 

segments, intersections or access points based on the information from site location, traffic 

control and presence of signals. The author identified roadway locations where severe crashes 

tend to occur. Failures to use safety equipment by all passengers and presence of 

driver/passenger in the vulnerable age group (more than 55 years or less than 3 years) were also 

other new variables that were included in the data. The details of how the inclusion helped in a 

better understanding of the severity aspect has been discussed in the ‘Analysis and Results’ 

section later on in the chapter. 

 

Crash data from the high-speed multilane arterials with partial access control in Florida have 

been collected. These arterials have been divided into groups based on their lengths and roadway 

design standards (urban/suburban and rural). The following section will focus on the details of 

the data collection and aggregation. It is followed by the methodology section where conditional 

inference trees and forests will be discussed.  The results and analysis section will explain the 

results from the conditional inference trees and the forests. While the random forests provide a 

more robust set of variables associated with severe/fatal crashes; individual tree helps in making 

relevant inferences about the relationship.  
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6.2 Data Collection and Preparation 

The crash data available were from the Crash Analysis and Reporting (CAR) system of the 

Florida Department of Transportation (FDOT). The Roadway Characteristics and Inventory 

(RCI) data was also made available to us through the FDOT. The data used are for the years 

2004 through 2006 for all the state roads of Florida. The datasets have information regarding 

traffic, roadway geometric and driver related factors. The datasets were merged and the 

parameters were modified to suit the data mining methodology being implemented in the study. 

As mentioned in CHAPTER 5, the corridors were grouped in four clusters (see Table 5-1).  

 

Different types of crashes occur on the corridors and the contributing causes for the different 

types also vary. Even though the overall safety of the corridor is being analyzed, the approach to 

investigate different crash types separately would shed more light. The crashes were grouped 

into 6 major types as follows: i) angle/ turning movement; ii) rear-end; iii) head-on; iv) 

sideswipe; and v) crashes involving single vehicles.  

 

The conditional inference trees used in this study helps us in identifying the contributing factors 

associated with the severity of the crashes that occurred along a corridor. However too many 

parameters lessen the discriminating ability of the models as the overall degrees of freedom 

available for the model development decrease. Hence only a subset of the available factors 

should be chosen for model development. Milton et al. (2008) have also pointed out that event 

specific variables are least desirable in developing injury severity models. Hence for the analysis 

a few variables were chosen based on engineering judgment and taking into consideration that 
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event specific factors are not in use to a relatively large extent. The variables were broadly based 

on two different categories: 1) environmental and road geometric factors; 2) driver and vehicle 

related factors. The variables used in the study are described in Table 6-1. They have been 

derived directly from the datasets or a combination of parameters. Both these sets of parameters 

have their application values.  

 

Table 6-1 Dependent / Independent Variables used for Conditional Inference Tree / Forest Analyses  

Variable Name  Variable Description Urban / Sub-urban 
Target or Dependent Variable 

Sev Severity Binary (1 = incapacitating injuries/ fatalities; 
2 = possible/ non-incapacitating injuries) 

Environmental and Roadway Geometric Parameters 
pavecond Pavement condition 4 levels (poor, fair, good and very good ) 
surf_type Type of surface Binary (1 = black top surface; 2 = other) 

surface_width Surface width Continuous  
shld_t Type of shoulder Binary (1 = paved; 2 = unpaved) 

max_speed Maximum posted speed 
limit 

Continuous  

park Presence of parking Binary (1 = no; 2 = yes) 
skid_f Friction resistance Skid <= 34 

34 < skid <= 38 
Skid > 38 

median Types of median 9 levels (0 = no median; 1 = painted;  
2 = median curb <= 6”;  

3 = median curb > 6”; 4  = lawn; 5 = paved;  
6 = curb <= 6” and lawn; 7 = curb>  6” and lawn; 

8 = other) 
ACMANCLS_num Type of median openings 7 levels (0 = no median opening; 2 = restrictive opening 

w/ service roads; 3 = restrictive median; 4 = non 
restrictive median; 5 = restrictive median with shorter 
directional openings; 6 = non restrictive median with 

shorter signal connection; 7 = both restrictive and non-
restrictive median types) 

road_cond Road condition at time of 
crash 

Binary (1 = no defects; 2 = defects) 

vision Vision obstruction Binary (1 = no; 2 = yes) 
shld_side Shoulder + sidewalk width Continuous  
curvclass Horizontal degree of 

curvature 
6 levels (curve < 4’; 4 <= curve <= 5’;  

5 < curve <= 8’; 8 < curve <= 13’; 
13 < curve <= 27’; curve > 27’ 

 
surf_cond Surface condition Binary (1 = dry; 2 = other) 
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light Daylight condition  Binary (1 = daylight; 2 = other) 
ADT Annual daily traffic ADT <= 31000 

31000 < ADT <= 40000 
40000 < ADT <= 52500 

ADT > 52500 
t_fact Average truck factor t_fact <= 4.05 

4.05 < t_fact <= 5.895 
t_fact > 5.895 

k_fact Average k - factor k_fact <= 9.85 
k_fact > 9.85  

dayandtime Combination of the day of 
week and time of day 

Afternoon Peak Weekday 
Morning Peak Weekday 
Friday or Saturday Night 

Off-peak 
trfcway Vertical curvature  Binary (1 = level; 2 = upgrade/ downgrade) 

element/ element 1 Assignment of crashes to 
roadway elements 

Ternary ( 1 = segment; 2 = intersections; 3 = access 
points) / Binary (1 = segments/ access points;  

2 = intersections ) 
LIGHTCDE Street lighting Ternary (Y = full lighting; N = no lighting;  

P = partial lighting) 
Driver and Vehicle related Parameters

age_gr Age group of the at fault 
driver 

Age < = 25; 25 < age <= 35; 35 < age <= 45; 
45 < age <= 55; 55 < age <= 65; 65 < age <= 75; 

Age > 75 
veh_type1 At-fault type of vehicle 4 levels (1 = automobiles; 2 = light trucks; 3 = heavy 

vehicles; 4 = light slow moving vehicles) 
alcohol_use Alcohol/ drug use of the 

at-fault driver 
3 level (1 = no use; 2 = use; 3 = no information) 

vuln_age Presence of vulnerable age 
group passengers in the 

vehicle ( age < 5 or age > 
55) 

Binary (1 = yes; 2 = no) 

more Presence of more than 5 
passengers inside either of 

the involved vehicles 

Binary (Y = yes; N = no) 

sfty Use of safety equipment in 
the vehicle by 

driver/passengers 

Binary( 1 = yes; 2 = no) 

gender Gender of the at-fault 
driver(s) 

3 levels (1 = male; 2 = female; 3 = both) 

veh_move1 Vehicle movement of the 
at-fault vehicle 

4 levels (1 = straight ahead; 2 = turning movements; 3 = 
changing lanes; 4 = other) 

  

The variables illustrated in Table 6-1 are mostly derived from the RCI database. Many variables 

have too many categories, in the raw form, to start off with. Hence, level reduction in variables is 

not only critical but also simplifies the model and makes them more readily explainable. For 
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example, vehicle movement, vehicle type, roadway conditions, vision obstruction, surface 

condition, surface type, and type of median are some of the variables with many categories. For 

example, the proposed methodology (conditional inference trees/forests) uses Chi-square test 

statistic to identify the relationship between a particular parameter and target variable. Each 

category of the variable should have sufficient number of observations in the contingency table 

for the Chi-square to be evaluated as discussed by Das et al. (2008). Continuous variables like 

ADT, Percentage of trucks, and K-factor (design hour volume as a percentage of ADT) and skid 

(friction resistance multiplied by a factor of 100) were also divided into categories. Their 

relationships with severe/fatal crash occurrence may not be monotonous in nature. Time of crash, 

along with day of week, were combined into one variable representing day of week and time of 

day. The weekend night times were not treated as off peak hours as there may be higher 

instances of alcohol impaired driving.  

 

Traditionally the site location variable has been used by researchers to assign crashes to the three 

roadway elements (segments, intersections and access points). However a detailed review of 

several hundred crash reports, suggested that the ‘site location’ variable by itself was a weak 

indicator for the same. For example, it was observed that it is possible for a crash to be not 

attributed to a signalized intersection even if it may have occurred very close to one. In fact, 

‘traffic control’ in combination with the ‘site location’ along with the information of the presence 

or absence of signal, did a superior job in attributing crashes to one of the three roadway 

elements (see CHAPTER 4). Based on these three independent parameters, a variable ‘element’ 

was created to assign the crashes to the three roadway elements, namely segments, intersections 
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and access points. However it was also observed and verified through the study of crash reports 

that distributing crashes to the three roadway elements works fine with all types of crashes 

except for the angle / turning related crashes. Most of such crashes occur at the signalized 

intersections. The crashes which occur on the segments were observed to have occurred mostly 

on auxiliary lanes (right / left turning lanes). Hence these could be either way attributed to the 

segment or access points. Therefore for angle / turning related crashes the ternary variable 

‘element’ takes the form of binary ‘element1’ where the crashes either belong to the signalized 

intersection or to segment/ access points. This new variable appears in certain tree results 

(developed along with conditional inference forests for relevant inference) and also positively 

contributes to model development in the forests.  

 

Zhang et al. (2000) found the non-use of seat belt to increase the risk of severe injuries. In this 

study, the parameter for safety equipment in use is for all the passengers. This is different from 

the traditional approach as it is more useful to look at the overall safety of all the passengers 

rather than just focusing on the safety equipment use of the driver. The importance lies in the fact 

that there a lot of crashes in which the drivers may not be injured at all. The vulnerable age group 

binary variable points out the presence of children or elderly passengers inside the vehicle. The 

physical fragility of the people belonging to these age groups described in Table 6-1 makes it an 

interesting variable and the results also show interesting pattern related to severity.  

 

The median types were combined into 9 levels. It does the two fold job of not only giving a sense 

of the median obstruction imposed but also gives an idea as to how far apart the opposing 
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directional roads could be. The author observed that the median width was a variable that is 

really dependent on the median type. Hence the median width was sufficiently represented 

within the variable median type. A new variable called ‘shld_side’ has been created which 

simply represents the total width of the outside shoulder and the sidewalk. This variable gives 

more realistic idea of the side space available for the vehicles traveling in the outer lane, 

especially in the urban areas where the shoulder width sometimes is negligible as compared to 

those available in rural settings. Hence, the original information on shoulder width and the 

sidewalk width were replaced with this new variable.  

 

The target variable of severity is binary. The first level represents fatalities and incapacitating 

injuries. They are combined into one level for two reasons; first, the relatively small frequency of 

fatal crashes compared to other injury severity levels. For example, the Chi-square tests may not 

be valid due to low expected cell-frequency. The second reason is that the crashes that involve 

incapacitating injury could easily have been fatal and vice-versa possibly due to vulnerability of 

the subjects involved (Das et al. (2008)). The second level includes crashes with possible injuries 

and non-incapacitating injuries. The crashes with no injuries were not included as these are likely 

expected to be incomplete. This issue has been well investigated and documented by Abdel-Aty 

and Keller (2005). Yamamoto et al. (2008) also have discussed the issue of possible under 

reporting of such crashes and the bias resulting from it. Hence, in the present study the authors 

have included those crashes with injury severity level of at least a possible injury or higher.  
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It should be noted here that the conditional inference forests, which have been used to calculate 

the variable importance score, do not accept missing values. Hence, the data set has no missing 

data. Hence the introduction of random parameters to account for missing data, as done by 

Milton et al. (2008), is not required in this study. As mentioned earlier the crashes have been 

grouped into 5 types, namely: i) angle/ turning movement; ii) rear-end; iii) head-on; iv) 

sideswipe; and v) crashes involving single vehicles. The numbers of crashes in each of the crash 

categories are 6231, 5532, 1261, 2204 and 2404, respectively, for the models developed for 

environmental and roadway geometric factors. Where as for the models developed for driver and 

vehicle related factors the number of crashes are 7759, 6775, 1583, 2612 and 2879, respectively. 

As no missing data record could be used, the records deleted for the environmental and roadway 

geometric factors’ models are 31973. This accounts for 6.6% of the three years of Florida crash 

data used. Similarly for the driver and vehicle related factors’ models the crash records that were 

deleted were 27997 which accounts for 5.8% of the three years of Florida crash data used.  

 

6.3 Modeling Methodology  

6.3.1 Conditional Inference Tree 

Traditionally classification trees (Breiman et al. 1984) have been used to determine variable of 

importance in most transportation studies. Decision trees are tree-shaped structures representing 

sets of decision which self-generate (as opposed of being dictated) rules for the classification of a 

dataset (as opposed to a sample), in a hierarchical order, using algorithms such as ID3 and its 
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improvements C4.5 and C5.0, as well as CART and CHAID (Quinlan, 1986; Quinlan, 1993). No 

assumptions are made about the distribution of data.  

 

The modeling approach adopted here in is the conditional inference trees and the forests 

developed there from. The focus of the study is to find out parameters that are related to the 

injury severity. The trees not only give the variables of importance but also help us in better 

interpretation of the results. Especially in severity analysis the advantage in using trees is that it 

helps us determine the values of parameters which contribute more to the severity of crashes. 

Hence from a safety aspect this is critical as it can help determine what changes need to be made 

in the design and/ or policies to improve the safety. Conventional classification and regression 

trees have always been used to select variables of importance. According to Strob et al. (2007), 

the CART trees have a variable selection bias towards variables which are continuous or with 

higher number of categories. The most common splitting criterion in the CART tree is the Gini 

Index to find a favorable split. The Gini Index checks for the purity of the resulting “daughter” 

nodes in the tree. According to Breiman et al. (1984), for a given node‘t’ with estimated class 

probabilities ‘p(j|t)’, j = 1, ….., J, the node impurity ‘i(t)’ is given by:  

 

Equation 6-1 

))|(),......,|1(()( tJptpti Φ=  

 

A search is made for the most favorable split, one that reduces the node or equivalently tree 

impurity. If the adopted form is Gini diversity index then ‘i(t)’ takes up the form:  
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Equation 6-2 
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The Gini index considered as a function ‘Φ(p1,……,pJ)’ of the p1,……,pJ is a quadratic 

polynomial with nonnegative coefficients. Therefore for any split ‘s’, ‘δ(s, t) >= 0’. Since the 

criteria looks for a favorable split, the chances to find a good split increases if the variable is 

continuous or has more categories. Therefore even if the variable is not informative, it could sit 

higher up on the tree’s hierarchical structure. Hence, in this study conditional inference trees 

(Hothorn et al. (2006)) have been used, where the node split is selected based on how good the 

association is. The resulting node should have a higher association with the observed value of the 

dependent variable. The conditional inference tree uses a chi-square test statistic to test the 

association. Therefore, it not only removes the bias due to categories but also chooses those 

variables which are informative.  

 

The key to this recent algorithm is the separation of variable selection and splitting procedure. 

The recursive binary partitioning which is the basis of the framework is given below.  

 

The response ‘Y’ comes from sample space ‘Y’, which may be multivariate. The m-dimensional 

covariate vector X = (X1,….,Xm) is taken from a sample space X  = X1,*……*Xm. Both the 

response variable and the dependent variables may be measured at any arbitrary scale. The 

conditional distribution of the response variable given the covariates depends on the function of 

the covariates.  
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Equation 6-3 
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For a given learning sample of ‘n’ iid observations a generic algorithm can be formulated using 

nonnegative integer valued case weights w = (w1,….,wn). Each node of a tree is represented by a 

vector of case weights having nonzero elements when the corresponding observations are 

elements of the node and are zero otherwise. The generic algorithm is given below:  

 

1. For case weights w the global null hypothesis of independence between any of the 

covariates and the response is tested. The step terminates if the hypothesis cannot be 

rejected at a pre-specified nominal level ‘α’. Otherwise the jth covariate Xj with the 

strongest association to the response variable is selected. 

2. Set A ⊂  Xj, is chosen to split Xj, into two disjoint sets. The case weights wleft and 

wright determine the two subgroups with wleft,i = wiI(Xji ∈  A) and wright,i = wiI(Xji ∉A) 

for all i = 1,….,n and I( ) denotes the indicator function, which indicates the 

membership of an element in a subset.  

3. Recursively repeat the steps 1 and 2 with modified case weights wleft and wright, 

respectively. 

 

The separation of variable selection and splitting procedure is essential for the development of 

trees with no tendency towards covariates with many possible splits. For more details of the 

algorithm the readers are directed to the paper by Hothorn et al. (2006). 
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6.3.2 Conditional Inference Forest 

Forests which are a collection of multiple tree classifiers are used for variable selection. A 

decision tree, with all its simplicity and handling of missing values, can be very unstable. In 

other words, small changes in the input variables might result in large changes in the output. In 

this regard, forests are more robust variable selection tool. Random Forests’ algorithm was 

developed by Breiman (2001) which works in the framework of the classification and regression 

trees, but instead of having one tree, they have multiple trees. The forests are most important in 

calculating the variable importance measure. Recent works in transportation by Abdel-Aty et al. 

(2008) and Harb et al. (2009) used the random forests algorithm to determine the variables of 

importance.  However Strobl et al. (2007) showed that the bootstrapping method (sampling with 

replacement) and the use of Gini index results in the biased selection of variables of importance. 

The Gini index shows a strong preference for variables with many categories or for the ones 

which are continuous. Variables with more potential cut off points are more likely to produce a 

good criterion value by chance. This variable selection bias which occurs in each individual tree 

also has an effect on the variable importance measure. In the previous sub section it was 

mentioned that the algorithm for recursive binary partitioning uses the association tests like chi-

square test to select informative variables. Therefore bootstrap sampling with replacement 

induces bias because the cell counts in the contingency table are affected by observations that are 

either not included or are multiplied in the bootstrap sample. Hence the forests that we have used 

in this study comprise of the trees that have developed in the conditional inference framework. 

The next subsection describes the variable importance computation process.  
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6.3.3 Variable Importance 

The basis of the variable importance in forests is as follows. By first randomly permuting the 

predictor variable Xj, the original association with the response variable Y is broken. When the 

permuted variable along with other non-permuted variables is used to predict the response for the 

out-of-bag observations the classification accuracy decreases substantially if the permuted 

variable is associated with the response. Hence the variable importance of a variable is the 

difference in the prediction accuracy before and after permutation of the variable Xj, averaged 

over all trees. Out-of-bag observations are those that the method excluded while developing the 

trees. They form an internal test data set and there is no need to allocate a test data set separately. 

Let )(tB be the out-of-bag sample for a tree‘t’, with },.....,1{ ntreet ∈ . The variable importance of 

one tree is then given by the following:  

 

Equation 6-4 
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variable. The raw variable importance score for each variable is then computed as the mean 

importance over all trees and is given by: 
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Equation 6-5 
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Since the individual importance scores )()(
j

t xVI are computed from ‘ntree’ independent 

bootstrap samples, a simple test for the relevance of variable Xj can be constructed based on the 

central limit theorem for the mean importance of )()(
j

t xVI . If individual importance has a 

standard deviation σ, then the mean importance from ‘ntree’ replications has a standard error 

of ntree/σ .  

The next section emphasizes on the results of the random forests results for the various severity 

models developed on the urban/sub-urban and rural corridors according to the various crash 

types. 

 

6.4 Analyses and Results  

6.4.1 Conditional Inference Forest Variable Importance Results 

This section deals with the results of conditional inference forests which typically illustrate the 

variables of importance. In the present study the conditional inference forests generated for the 

models, with the binary severity variable as the target, gives the variable importance score for all 

the variables in the model. The sign (positive/ negative) of the importance score indicates 

whether the presence or absence of a variable in the model will improve or degrade the 
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efficiency of the model to exemplify the variable importance score the authors tabulate the 

results for a particular cluster (in this case Cluster 3 for angle/ turning movement crashes) in 

Table 6-2 and Table 6-3. As mentioned earlier in the section 6.2 Data Collection and Preparation, 

the variables have been categorized into two. Hence for each cluster and crash type two models 

had been developed, one for the environmental and roadway geometric and the other for driver 

and vehicle related characteristics. Results in Table 6-2 are for the model with only 

environmental and roadway geometric factors and those in Table 6-3 are for the driver and 

vehicle related characteristics’ model. As a reminder to the readers, Table 6-1 has the 

explanation of the variables. 

  

It should be noted that Table 6-2 and Table 6-3 are examples of the output of a condition 

inference forests. The variables with a positive variable importance score are the most important 

for the severity model developed here in the example. Their association with the target variable 

is the maximum and their absence would decrease the model performance. The variables with 

zero importance score are believed to have no effect on the model performance, while the ones 

with negative importance (as highlighted in Table 6-2) are the ones decreasing the model 

performance. Readers may note that the variable LIGHTCDE has not been included in the Table 

6-2. The variable was not included in the particular model as it had only one level and can not be 

used for split during tree development. The same is the reason for no information on LIGHTCDE 

in some of the cells of Table 6-4 as well.  

  



 

 

88

It is critical to distinguish the significant from non significant. As the dataset change, i.e. a new 

model is being developed, the importance score may also change. A particular variable may 

improve the model efficiency in one group where as it may decrease in another group, while 

being neutral in some other. All the conditional inference forests results were developed at 90% 

confidence level.  

Table 6-2 Conditional Inference Forest sample result for environmental and roadway geometric factors 

Variable Name Variable Importance Score 
Shoulder + Side 0.000358 

Pavement condition 0.00026 
Median Openings 0.000163 

Median type 0.000163 
Truck factor 0.00013 

Vision obstruction 6.50E-05 
Skid (friction resistance) 6.50E-05 

Roadway condition  0 
Horizontal Degree of Curvature 0 

Surface condition 0 
Parking type 0 

Traffic-way character 0 
Surface width -9.76E-05 

K factor -6.50E-05 
Day of the week and time of the day -6.50E-05 

Surface type -3.25E-05 
Daylight condition -3.25E-05 
Roadway element -0.00013 

Maximum posted speed limit -0.00026 
ADT -0.00029 

Shoulder type -0.00036 
 

Table 6-3 Conditional Inference Forest sample result for driver and vehicle related factors 

Variable Name Variable Importance Score 
Alcohol usage 0.004544 

Age group 0.004488 
Vehicle movement 0.000309 

Safety equipment use 0.00014 
Vehicle type 5.61E-05 

At fault driver gender 2.81E-05 
Vulnerable age group 2.81E-05 

Presence of more than 5 persons 0 
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Table 6-4 and Table 6-5 tabulate the conditional inference forests results developed for all 

severity models in the study. For certain types of crashes (namely: head-on; sideswipe; single 

vehicle involved; slow moving vehicles involved) the number of crashes in the urban clusters 1 

and 2 were not sufficient for the trees to develop. Hence for these types of crashes the clusters 1 

and 2 were combined. All the results were developed with the use of the statistical software 

package ‘R’. The package ‘party’ developed by Hothorn et al. (2008) was used to generate the 

conditional trees and forests results. Key for Table 6-4 and Table 6-5 is:  

  

‘+’: variables which increase the model efficiency, 

‘-’: variables which decrease the model efficiency,  

‘0’: variables which are neutral to model efficiency. 

 

It should be noted that in Tables 3(a) and (b) there could be certain blank cells, i.e. they do not 

have any of the three symbols mentioned above. For example, the variable LIGHTCDE do not 

appear in the Table 3(a) in a number of cells. The reason for the exclusion is that the variable 

was not used for that particular model development, as it had only one level.  
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Table 6-4 Severity models’ Conditional Inference Forest results for urban clusters with environmental and roadway geometric factors  

 

Table 6-5 Severity models’ Conditional Inference Forest results for urban clusters with driver and vehicle related factors 
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As mentioned earlier, the variables with “+” sign in the boxes are the variables with higher 

importance, i.e. they improve the model efficiency more than the other variables for the given 

model. The ones with “0” means they are neutral for the severity model. The variables with “-” 

are the ones with least effect on the corresponding model. It must however be understood that the 

“+” sign need not necessarily mean that the variable is positively associated with severity. For 

better interpretation of the variable’s influence on the severity single conditional inference trees 

were developed for the models. And depending on how the variables split, the approach to 

severe/fatal crashes would be clearer. The next subsection deals with the individual conditional 

inference tree results.  

 

6.4.2 Conditional Inference Tree Results 

6.4.2.1 Example of Conditional Inference Tree and how to interpret them 

The conditional inference trees are critical to observe which parameters are related more to 

severity and also how they are related. Before we move to the details of the results the authors 

would like to exemplify certain individual conditional inference tree results through Figure 6-1 

and Figure 6-2. The trees shown in the figures are for angle/ turning movement crashes in 

Cluster 1. Figure 6-1 represents the tree model for environmental and roadway geometric factors, 

where as Figure 6-2 is the model for driver and vehicle related factors.  
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Figure 6-1 Conditional Inference Tree sample result for environmental and roadway geometric factors 

 

Figure 6-2 Conditional Inference Tree sample result for driver and vehicle related factors 

 

All the trees were developed at 90% confidence level. The p value in the nodes of Figure 6-1 and 

Figure 6-2 denotes the actual significance level at which the split has taken place. All the nodes 
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are shown in white oval shape whereas all the terminal nodes (leaves) are shown in the 

rectangular boxes. The small square boxes with numbers on both the ovals and rectangles denote 

a unique numerical representation of the node or leaf. In the white oval shapes the variables 

mentioned is the split variable and the p value denotes the significance level. The numbers on the 

lines connecting the nodes to other nodes or leaves denotes the specific categories of variables or 

range of values of variables which lead to the extension of that particular branch of the tree. For 

example, in Figure 6-2 the variable alcohol_use splits the node and all the cases of the variable 

taking up the value 1 (denoting no alcohol/ drug use) leads to the leaf, which is uniquely 

numbered as ‘2’. For the other branch the variable either takes the value 2 or 3 (denoting alcohol 

use or pending test results) to reach the other leaf, uniquely numbered as ‘3’. The general 

direction of flow of the lines in any conditional inference tree is top to bottom. It goes from one 

node to other node/ leaf. As can be observed the leaf contains the information about the number 

of cases in the particular leaf, denoted by n. The proportion of non-severe and severe crashes is 

also shown in the leaf, through the numbers given by y. To exemplify, the authors again refer to 

Figure 6-2. The leaf, uniquely denoted by ‘2’ has n = 1849 cases, where as the proportion of non-

severe crashes was 0.851 while that of severe crashes was 0.149 (denoted by y = (0.851, 0.149)). 

As can be observed from Figure 6-1 and Figure 6-2, there are red ovals covering certain leaves. 

These leaves have higher proportion of severe crashes than the proportion of severe crashes in 

the particular dataset from which the model had been developed. The path taken from the 

original parent node to the particular leaf thus gives us the conditions which lead to higher 

severity. The variables on the path, on which the splits have been done, reflect which variables 

are associated with severity.  
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From here on the results will be based on crash type and the relevant results from different 

clusters will be grouped together. The explanation will include both the categories of models 

developed, namely: 1) environmental and roadway geometric and 2) driver and vehicle related. 

The order will be adhered to for most part of the explanation.  

 

6.4.2.2 Angle / Turning Movement Crashes 

As mentioned earlier the corridors in Cluster 1 (1.009 – 2.89 miles) are the smallest in length. 

According to the environmental and roadway geometric model for angle/ turning movement 

crashes occurring in this particular cluster’s corridors, the severity is higher where the shoulders 

are paved and the k-factor is higher. Even though paved shoulders leading to higher severity 

seems counterintuitive, the only reason could be that better shoulders may be misused as 

additional lanes for dangerous maneuvers.  The higher k-factor indicates that, higher the peak 

hour volume the higher risk it involves for angle/turning movement crashes. With lower k-factor 

but restrictive medians (with longer distance between openings), the severity of the crashes is 

found to be higher. Since angle/ turning movement crashes mostly occur at intersections, it is 

interesting to note that Levinson (2000) pointed that even though restrictive medians provided 

better separation of traffic and better pedestrian safety, however adequate provisions have to be 

made for left and U turns to avoid an overwhelming increase in movements at the intersections. 

Lack of adequate left or U turns could be one of the reasons why this result was observed. For 

the same cluster alcohol/drug use is also found to be associated with severe/fatal crashes in the 

model for driver and vehicle related factors. The authors in a previous study (Das et al., 2008) 
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found similar result for alcohol/ drug use. Wang and Abdel-Aty (2008) found an increasing 

effect of alcohol/ drug use in severity of crashes. In Cluster 2 (2.898 – 5.729 miles) for the 

environmental and roadway geometric model, posted speeds greater than 45 mph are found to be 

riskier. In a recent study by Malyshkina and Mannering (2008), they found higher posted speed 

limit to be associated with higher severity of injuries. For corridors where the posted speed limits 

are less than 45 mph and high k factor, conditions are suitable for crashes with higher injury 

severity. In the driver and vehicle related factors’ model, failure to use safety equipment and 

alcohol/drug use also lead to severe/fatal crashes. Though much research highlights the seat belt 

use and its obvious benefits (Evans, 1996; Derrig et al., 2000; Eluru and Bhat, 2007), very few 

discuss the effects of other safety equipment in use inside the vehicle in general. Likewise for 

Cluster 3 (5.762 – 10.556 miles) corridors the model for environmental and roadway geometric 

reflects that posted speeds of greater than 50 mph leads to higher severity. While the model for 

driver and vehicle related factors show that the non-use of safety equipment and alcohol/drug use 

again lead to crashes which are more at threat to be severe. However, for Cluster 4 (10.644 – 

78.293 miles) corridors, the two models (environmental and roadway geometric factors’ model; 

and driver and vehicle related factors’ model) were developed at only 70% and 75% levels of 

confidence, respectively. Hence, the results are not reported here. Summarizing the results 

reflects that angle/turning movement crashes are more severe under high speeds, no safety 

equipment in use and driving under the influence. The results are consistent with the common 

perception.  
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6.4.2.3 Rear-end Crashes 

The environmental and roadway geometric factors’ model for the rear-end crashes in Cluster 1 

suggests that higher friction resistance (skid > 38) lead to higher severity of injuries given the 

crash has occurred. This is counterintuitive as higher friction should be better at preventing 

severe crashes. The result could provide insight to the phenomenon that when the friction is 

higher and the vehicles can brake within shorter distances, the internal movement could be 

sudden and any internal/secondary collision (i.e. passengers hitting something inside the vehicle) 

could lead to a severe injury. In the model for driver and vehicle related factors it was observed 

that the severe/fatal crashes are linked to light, slow moving vehicles like cycles, mopeds, etc. 

The higher severity level is intuitive, as any crash with light vehicles will generally be severe. 

Huang et al (2008) found similar result in their investigation of traffic crashes at intersections. 

The environmental and roadway geometric model for Cluster 2 corridors indicate that the posted 

speed limit of greater than 50 mph leads to severe rear-end crashes. Similarly, in a recent 

technical report developed for NHTSA by Liu and Chen (2009) it was observed that severe 

crashes are more likely to occur at corridors with posted speed limits of 50 mph or greater.  On 

the other hand when the speeds are less than 50 mph, crashes will be severe/ fatal when the k-

factor is high. For the same Cluster 2 corridors alcohol/ drug use leads to crashes which are 

severe/ fatal as shown by the driver and vehicle related factors’ model. It is observed that when 

there is no alcohol/ drug use by the responsible driver the presence of a person in the vulnerable 

age group (> 55 yrs or < 3 yrs) makes the crash more severe in general. While alcohol/ drug use 

is a case of irresponsible driving behavior the presence of person in the vulnerable age group is a 

clear case of physical fragility. People in the vulnerable age group always tend to experience 
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severe injuries resulting out of a crash. The authors would like to bring a particular case reported 

by Batra and Kumar (2008) in which an 84 year old man succumbs to injuries resulted in a low 

velocity collision. In this particular case the injury was a subaxial cervical spinal cord injury 

which was triggered by the airbag deployment and interestingly the driver was not wearing a seat 

belt. The authors cite this particular example as it was observed that under relatively slower 

speeds (<50 mph) severe injuries can occur if the safety equipment is not properly used and it 

also confirms the observation that the presence of a person in the vulnerable age group will 

succumb to injuries that become more apparent due to physical fragility. On Cluster 3 corridors 

lower ADT leads to higher severity crashes while the driver and vehicle related factors’ model 

indicate alcohol/ drug use leads to severe/fatal crashes. Lower ADT could mean higher speeds 

which more often lead to severe/ fatal crashes. For even longer corridor groups, i.e. Cluster 4, 

higher friction resistance (skid > 34) leads to severe rear-end crashes by the environmental and 

roadway geometric factors’ model. The explanation has been given in the beginning of this 

subsection. For lower friction resistance, greater surface widths (corresponding to 3 or more 

lanes per direction) and the presence of median curb increase the severity level of crashes. The 

increase in surface width should traditionally reduce severity (Petritsch et al., 2007); however 

this result might seem counter intuitive. This could be explained in the following way. Higher 

surface width may result in higher speeds and more driver comfort which might cause some 

drivers to be less cautious. Hence the increase in speeds and less attention by the drivers could 

lead to crashes with severe injuries. The authors in one of their previous work (Das et al., 2008) 

had found similar result. On the same corridor group, older drivers (> 55 yrs) also are involved in 

severe rear-end crashes. The longer the corridors the more the exposure of the driver and the 
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older the driver the more prone is he/she to make an error. Marshall (2008) states that prevailing 

medical conditions and impairments associated with old age leads to deteriorating fitness and 

hence lead to higher crash risk for the older driver.  

 

6.4.2.4 Head-on Crashes 

For head-on type of crashes on corridors belonging to Clusters 1 and 2 combined, crashes on dry 

surface condition were found to be more severe/ fatal from the environmental and roadway 

geometric model. However, the model for driver and vehicle related factors was developed at 

lower confidence level of 70%; hence the results are not reported here. Dry surface conditions 

probably indicate fine weather and more vehicles on the road. Hence improper maneuvers could 

result in head on collisions, especially when the highways are undivided, resulting in severe 

crashes. In a related study by Yan et al. (2008) it is shown that slippery road conditions lead to a 

higher probability of crash avoidance maneuvers as drivers will drive more cautiously during 

unfavorable conditions. Hence, the results in this study indicate that drivers could be less 

attentive when driving in good weather and road conditions. In Clusters 3 and 4, alcohol/drug 

use is the primary reason for severe head-on crashes.  

 

6.4.2.5 Sideswipe Crashes 

In sideswipe crashes, restrictive medians are more threatening on shorter corridors (Cluster 1) as 

shown by the environmental and roadway geometric model. While on longer corridors (Cluster 

3) straight ahead movement is crucial as observed from the driver and vehicle related factors’ 
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model. For all other type of movements, severe sideswipe crashes occur when slow moving 

vehicle type and light trucks are involved. Research work by Anderson (2008) indicates that the 

increase in the light truck traffic increases the number of fatalities on the road. In the same work 

it was indicated that up to eighty percent of the increased deaths can be assigned to occupants in 

other vehicles and pedestrians. For severe/fatal sideswipe crashes involving slow moving 

vehicles, turning movements along with changing lanes are the significant parameters on Cluster 

3 corridors. The more the lane changing maneuvers the higher the probability of crash severity as 

many of the maneuvers will be risky.  

 

6.4.2.6 Single vehicle Crashes 

For crashes involving single vehicles, higher friction factor leads to increased severity in crashes 

on shorter length corridors (Cluster 1 and 2 combined) according to the environmental and 

roadway geometric factors’ model. On the other hand the driver and vehicle related factors’ 

model for the same corridors indicate straight vehicle movement related crashes are found to be 

more severe. For the single vehicle type of crashes, occurring on Cluster 3 corridors, that are 

related to segments or access points the crashes tend to be more severe at stretches where the 

posted speed limits are 45 mph or greater. The driver and vehicle related factors’ model show 

that failure to use safety equipment in slow moving vehicles also leads to severe injuries in 

crashes. In Cluster 4 the crashes are more at risk to be severe when the posted speed limit is 

greater than 50 mph. The driver and vehicle related factors’ model for this cluster indicate that 

slow moving vehicles (e.g. cycles, mopeds, etc.) tend to be involved in severe crashes. This 
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could be explained by the fact that on corridors with 50 mph posted speed slow moving vehicles 

pose a risk as they will create speed variance on the roadways. Collisions with slow vehicles 

would likely be severe.  

 

6.4.2.7 Results Summary 

The results discussed in the preceding subsections are summarized in Table 6-6 through Table 

6-10. The variables in the cell represent those which increase severity along with the range or 

categories. The blank cells indicate that the results could not be developed with the 90% 

confidence level. These tables will help the reader to have a comparative understanding of the 

variables entering a particular tree model and how they affect safety. Tabulating the results helps 

to better understand the results; particularly in this study where the results are brought together 

and compared across crash types and corridor clusters.  

 

Table 6-6 Significant factors for Angle / Turning movement crashes 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Environmental and 

Roadway 
Geometric Factors 

Paved shoulders and 
k factor > 9.85; 

Paved shoulders and 
k factor < 9.85 and 
restrictive median 

Posted speed limit > 
45 mph; posted 
speed limit < 45 

mph and k factor > 
9.85 

Posted speed limit > 
50 mph 

No significant 
results 

Driver and Vehicle 
Related Factors 

Alcohol/ drug use Non-use of safety 
equipment and 

alcohol/ drug use 

Alcohol/ drug use No significant 
results 
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Table 6-7 Significant factors for Rear-end crashes 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Environmental and 

Roadway 
Geometric Factors 

Skid resistance >38 Posted speed limit > 
50 mph; posted 
speed limit < 50 

mph and k factor > 
9.85 

Lower ADT 
(<31,000) 

Skid resistance >34; 
Skid resistance < 34 
and surface width > 
32 ft and presence of 

median curb 
Driver and Vehicle 

Related Factors 
Light slow moving 

vehicles 
Alcohol/ drug use;  
No Alcohol/ drug 

use and presence of 
person in the 

vulnerable age group 
(> 55 yrs or < 3 yrs) 

Alcohol/ drug use Older drivers > 55 
yrs 

 

Table 6-8 Significant factors for Head-on crashes 

 Clusters 1 and 2 Cluster 3 Cluster 4 
Environmental and 

Roadway 
Geometric Factors 

Dry surface condition No significant 
results 

No significant 
results 

Driver and Vehicle 
Related Factors 

No significant results Alcohol/ drug use Alcohol/ drug use 

 

Table 6-9 Significant factors for Sideswipe crashes 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Environmental and 

Roadway 
Geometric Factors 

Restrictive medians No significant 
results 

No significant 
results 

No significant 
results 

Driver and Vehicle 
Related Factors 

No significant 
results 

No significant 
results 

Straight ahead 
movement of the 
vehicle; turning 

movements along 
with changing lanes 

and slow moving 
vehicles 

No significant 
results 
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Table 6-10 Significant factors for Single vehicle crashes 

 Clusters 1 and 2 Cluster 3 Cluster 4 
Environmental and 

Roadway 
Geometric Factors 

Skid resistance >38 Crashes related to 
segments and/ or 
access points and 

posted speed limit > 
45 mph 

Posted speed limit > 
50 mph 

Driver and Vehicle 
Related Factors 

Straight ahead movement of the vehicle Non-use of safety 
equipment and slow 

moving vehicles 

slow moving 
vehicles 

 

6.5 Concluding Remarks 

The application of conditional inference trees and forests leads to the identification of an 

unbiased set of variables significantly related with severity. The advantage of the new algorithm 

of tree/forest development over the traditional CART tree/forest is that it prevents the 

uninformative variables from being identified as significant just by the virtue of having higher 

number of categories or being continuous in nature. The novel way of separating the split criteria 

from the variable importance selection while developing a tree is what makes the conditional 

inference trees unique. The Chi-square test is used to determine the strength of association with 

the target variable, in the present application it is the binary severity variable. Once a variable is 

selected at a particular tree level for split, the split can then be decided based on any criteria, 

including those used in the CART algorithm. The conditional inference forests on the other hand 

calculates individual variable importance of each variable for every tree by first breaking the 

association with permutation and then testing the tree with out-of-bag estimates. In the forests, 

the variable importance is based on the result from multiple trees thus avoiding the instability of 

individual trees.  
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Among the results from the analysis, alcohol/ drug use is associated with increased severity of 

crashes irrespective of the length of the corridors or the type of crashes. Since the drivers are less 

likely to be in control; it invariably leads to severe crashes. Failure to use safety equipment has 

lead to increased severity of single vehicle as well as angle/turning movement related crashes. In 

this regard, conclusions drawn by Abdel-Aty and As-Saidi (2000), by analyzing the zip codes of 

the offenders for better targeting of the education programs, may be of renewed interest. Older at 

fault drivers are found to be more at risk of getting involved in a severe crash especially in a 

rear-end collision on longer corridors. On similar corridors, a crash is more likely to have a 

severe injury where there is a person in the vulnerable age group (more than 55 years or less than 

3 years).  

 

Slow moving vehicles like cycles and mopeds have been observed to be involved in severe 

injury crashes. Many of these severe crashes occur at signalized intersections. It indicates that the 

designs of the intersections need to improve with respect to the slow-moving vehicles and 

possibly even pedestrians. For shorter length corridors, higher k–factor is a significant parameter 

for increased severity crashes. Higher k-factor essentially means that the corridor is designed for 

handling higher volume during peak hour. It in turn has the potential not only to reduce rear-end 

crashes during the peak hour (due to improved congestion situation) but also to increase speeds 

due to better design during off-peak periods. Since rear-end crashes tend to be less severe, higher 

k-factor leads to increased likelihood of severe crashes. On longer corridors, like those in Cluster 

3, severity of rear-end crashes increases when the posted speed limit is greater than 50 mph. 

Lowering the posted speed limit may not be the best strategy from an operations point of view 
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but it may lead to reduction in severity of crashes. Lower ADT also leads to severe rear-end 

crashes on Cluster 3 corridors, especially for rear-end crashes. Severe/fatal crashes involving 

single vehicles are more likely to be associated with access points on longer corridors. Reducing 

the number of access points may not always be feasible; however, design changes such as 

improved merging may be adopted for these issues. 

 

Corridors of smaller lengths (generally less than 5 miles) have been observed to have problems 

of increased severity if crashes occur on corridors with high skid resistance values. Shorter 

corridors also have problems when the posted speed limit is greater than 45 mph. Since most of 

these small urban/ suburban corridors are located between longer stretches of rural corridors; 

they have lower speed limits compared to adjacent sections. However, since the congestion is not 

high on the rural sections, some drivers will tend to speed and thus create a larger variation in 

prevailing speeds. This variation could lead to more severe crashes on shorter length corridors. 

Restrictive median openings on shorter corridors have also been found to be problematic. The 

variable indicating the presence of vulnerable age group also came out significant on shorter 

corridors rather than on longer corridors. On longer length (greater than 5 miles) corridors, speed 

limit of greater than 50 mph is a cause of concern. Non-use of safety equipment is also more 

pronounced in contributing towards severity on longer corridors. In a recent paper by Eluru and 

Bhat (2007) the question of the endogenous relationship between the seat belt use and the injury 

severity is raised. There is possibility of intrinsically unsafe drivers not wearing the seat belt and 

are the ones to be likely involved in high injury severity crashes because of their unsafe driving 

habits. In the present study, however, the researchers observe the overall safety equipment in use 
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in the vehicle. Results also show that the failure to use the safety belt in single vehicle crashes 

and crashes involving slow vehicle lead to higher severity crashes. Thus the present study is not 

only in line with concurrent research but also goes a step further in identifying the type of 

crashes which are more likely to be affected by the underlying endogenous relationship. 

 

Due to these observed differences, the decision to cluster the corridors has been justified. The 

subtle differences are highlighted when the groups are logically made. The clusters which were 

originally made based on the length actually shed light on the factors and a lot of new significant 

variables come into the picture.  

 

The results from the forest and the trees are intuitive and their association with severity may be 

explained. Certain known results about severity of crashes have been confirmed while some new 

information is discovered about others. Alcohol/ drug use along with higher speed limits tend to 

result in more severe/fatal crashes. The new variable “element” which uses information from site 

location, signal type information and traffic control was also insightful in identifying locations 

which are more critical from the severity aspect. Drivers of vehicles with passengers in the 

vulnerable age group range must also be more careful while driving, as the physical fragility of 

these subjects, tends to make the injuries more severe. The authors also used the safety 

information for all passengers seated in the car. That particular variable also was significantly 

associated with severity of crashes. Hence, it is critical that internal safety should be a concern 

for the law enforcement agencies if they are intended to reduce the occurrences of severe/fatal 

crashes on the arterials of Florida.  
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CHAPTER 7. GENETIC PROGRAMMING FOR CLASSIFICATION AND 
FREQUENCY ANALYSES 

7.1 Requirement for a common approach 

Safety assessment of roadway elements such as mid-block segments, signalized intersections and 

un-signalized intersections (access points) includes investigations into the severity as well as the 

frequency of crashes. The objective of transportation safety engineers is not only to reduce the 

number of crashes but also to mitigate the injury severity in case of a crash. Hence, any research 

directed only towards the frequency or the severity analysis of crashes renders inadequate. 

Though this aspect of safety analysis is widely accepted, the existing body of knowledge 

however has very limited citations for a complete analysis involving both the crash counts and 

severity of the injuries resulting in the crashes. Recently Ma et al. (2008) used a multivariate 

Poisson-lognormal approach to model crash occurrence simultaneously at various levels of 

injury severity. However, the complex statistical structure of the study makes it less practical to 

implement.  

 

Fundamental difference between the crash occurrence phenomenon and the injury severity levels 

is the response type. Crash occurrence is a continuous integer response while the severity is an 

ordinal target. Most statistical studies for the two phenomena are based on this difference. For 

crash count prediction, models such as negative binomial (Miaou, 1996; Harwood et al., 2000) 

and support vector machines (Li et al., 2008) are the norm. In case of injury severity, logistic 

regression (Huang et al., 2008; Sze and Wong, 2007), binary trees (Das et al., 2009; Chang and 
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Wang, 2006), ordered probit and logit models (Das et al., 2008, Obeng, 2008) and the innovative 

proportional odds model (Wang and Abdel-Aty, 2008) are the standard modeling practices.  

 

In this study the authors investigate a generalized heuristic approach of Genetic Programming 

(GP) to model injury severity as well as the crash frequency. GP uses concepts from evolutionary 

biology, such as crossover and mutation, for the model development process and is the same for 

both regression and classification. The process of model evolution takes places, through 

generations, with decreasing mean error as the objective function for regression and increasing 

hit rate as the objective function for classification problems.  

 

Presently the researchers investigate the frequency and severity analysis for crashes, specifically 

for urban arterials (not limited access facility) in this study.  Though they are fundamentally 

different phenomena yet they have an overlapping set of contributing factors. It must be 

understood that crash occurrence and the injury severity is sequential in the reference frame of 

time, i.e. they are not simultaneous. First, a crash has to occur and then an injury may result. 

Hence, there is a one-way dependency between both events. The author suggests here 

independent approaches for building both the severity and frequency of crashes models under the 

broader umbrella of the heuristic GP. Since the crash occurrence and injury severity are 

fundamentally different phenomena it is not practical to have one model governing them. 

However, in this study a common heuristic model development process for both events has been 

proposed. 
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The following section explains the GP methodology and the overall model development 

algorithm. The results and analyses follow next, with the injury severity analysis preceding the 

crash count modeling for rear-end crashes on urban arterials. The data set preparation has been 

included in the respective analysis sub-sections. The crash frequency analysis includes graphical 

demonstration of the change in crash counts with the change in parameter values. 

 

7.2 Genetic Programming (GP) 

According to Deschaine and Francone (2004), genetic programming (GP) is observed to perform 

better than classification trees in terms of lower error rates and also outperforms neural networks 

in regression analysis. GP is a heuristic search technique that iteratively evolves better programs 

which could either be the best solutions or lead to the best solutions. The innovative evolutionary 

computation, GP, is based on the genetic algorithms (GA). In GA, the optimum solution is 

reached by using the well established techniques of evolutionary biology. In a recent work by 

Makkeasorn et al. (2006) in the field of water resources management, soil moisture estimation 

models were developed by the use of DiscipulusTM Genetic Programming (GP) software and 

were applied to the soil moisture distribution analysis. The work shows that GP, a type of GP, 

helps in the development of excellent nonlinear multivariate regression models. The work also 

compared the GP model developed with the linear regression and nonlinear regression models 

independently and the GP model was found to be the best for the data. The linear regression 

model overestimated the soil moisture while the nonlinear regression models tend to 

underestimate it. According to Chang and Chen (2000) the regression models generated by GP is 
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also independent of any model structure. Use of GA in transportation is not new. They have been 

used widely in traffic signal system optimization and network optimization (Park et al., 2000; 

Ceylan and Bell, 2004; Teklu et al., 2007). The use of GA or GP in transportation safety studies 

is relatively new and hence the authors intend to test the method and observe its potential.  

 

7.2.1 Problems in Genetic Algorithm  

GP, which is a class of evolutionary algorithms, has its roots in the GA. GA is a method to grow 

from one population to a new population through the process of evolution. For a detailed review 

of conventional GA the readers are directed to the classical work by Holland (1975) and 

Goldberg (1989). For the more advanced learners, typically, in GA the representation is 

generally fixed length representation of length ‘l’ and the alphabet size is ‘k’. In the search space 

of a fixed length representation of length ‘l’ and alphabet size ‘k’ the available candidate 

solutions are kl. The initial selection of string length limits the search space and puts restrictions 

on the learning process of the GA. Thus traditional GA sometimes converges on suboptimal 

solution. Suboptimal performance may also occur when there is no hill to climb, i.e. if there is a 

single fitness criterion. For example, in binary classification the criterion is to check whether it 

goes to the right bin or not. Hence the GA may fail during classification. This observation is 

critical for the choice of GP over GA in classification problems. 
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7.2.2 Genetic Programming 

According to Koza (1992), “the most natural representation for a solution is a hierarchical 

computer program rather than a fixed-length character string”. The size and shape of the 

computer program, in other words the complexity of it, is not known apriori. The restrictions in 

the traditional genetic algorithms has led to the use of the more powerful and versatile genetic 

programming which takes into account the complexity of problem solving. They use other forms 

of representations like the tree structure or straight forward one line instructions to the machine. 

The author directs the inquisitive reader to the well documented work of Koza (1992) on GP. 

 

In traditional GP, the programs, in the memory, are stored as tree structures. Every tree node has 

an operator and every leaf node is an operand. This makes the evolution as well as the evaluation 

of the tree much uncomplicated. The evolutionary biological operations like crossover and 

mutation are also fairly easy to implement. Typically during crossover there occurs an 

interchange of sections between two homologous chromosomes at a certain splice point. On the 

other hand mutation means the alteration of any particular point in a chromosome. Chromosome 

here refers to the program instructions. With a tree based structure replacing a node, which 

occurs during the crossover, the whole branch is replaced. The resultant individual is very much 

different from the parent. In mutation, either the node’s information is replaced or the node is 

removed.  

 

However, in GP the crossover will occur between two or more instructions’ set whereas mutation 

will occur on a single instruction set. Figure 7-1 and Figure 7-2 show the crossover and mutation 
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occurring in GP. For example two functions, g(0) and h(0), be two instructions that has to be 

crossed over. The process of crossover between the two instructions is illustrated in Figure 7-1. 

The part of the instructions shown within the ovals will swap places.  

  

 

Figure 7-1 Crossover between two instructions in GP  

As can be observed from Figure 7-1 that crossover takes place between the branches, along with 

the operand, resulting in two daughter instructions, g’(0) and h’(0). In Figure 7-2 the process of 

mutation in GP is illustrated. The operand, in this example the division sign, ‘/’, has been circled. 

This operand can undergo mutation to any other mathematical operand. In this particular 

example it mutates to the multiplication symbol, ‘*’.  

 

Figure 7-2 Mutation of an operand in an instruction in GP 

 

Typically evolution or development occurs through generation and the fitness of the population, 

which is typically the evaluation criteria, is examined in every generation. Figure 7-3 represents 

the flowchart for a typical generation in GP. The fitness function in this study is the average of 

the squared errors, where error is the difference between the evolved output and the target 

output.  

k(0) = V[19]   /   V[43] Mutation k’(0) = V[19]  *  V[43]  

g’(0) = V[1]  –  V[4]  
 
 
h’(0) = V[3]  +  V[2] 

g(0) = V[1]  +  V[2] 
 
 
h(0) = V[3]  –  V[4] 

Crossover 
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Figure 7-1 Typical steps in one generation in GP 

 

However, in GP the representation of the computer programs is a set of instructions written in 

the machine language (Brameier and Banzhaf, 2007). The software DiscipulusTM, which has 

been used in this study, implements GP to develop best programs evolved for the problem at 

hand. Please note that from here on the authors will use GP term as that is the specific form of 

GP used. It must be noted that any reference to the term GP, in this particular study, always 

means the broader category of the heuristic approach.  

 

Begin 

Initiate generation  

Evaluate fitness 
for the populated programs 

Crossover and Mutation  
for reproduction  

End 

Yes 
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for fitness 

? 

 Next generation  
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7.2.3 DiscipulusTM 

Since it is based on GP, the population is comprised of linear computer programs. From an initial 

pool of computer programs, a random “tournament” selection from a set of 4 randomly chosen 

programs is conducted. The tournament then chooses the two best programs based on the 

performance on the task designated. These programs are then copied and the standard crossover 

and mutation operators are applied. The new “child” programs replace the two loser programs 

and the process repeats till the GP finds the best program suited for the given task. The software 

is a multiple-run genetic-programming system. The fact that the genetic programming is a 

stochastic algorithm, running it multiple times yields a wide variety of results. In this particular 

study for every run 80 generations must pass without improvement for the run to be terminated. 

Figure 7-4 represents the process undergoing in a typical run in the GP. In each run, the 

population undergoes evolutionary changes through generations.  
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Figure 7-2 Flowchart for processes in a typical run 

 

The software DiscipulusTM implements GP to develop best programs evolved for the problem at 

hand. Typically in this study a lower crossover rate (0.5) and a higher mutation rate (0.95) has 

Pool of programs 

Select 4 programs from pool, 
e.g. A, B, C, and D  

Tournament selection 
(Assume A and B as winners) 

Crossover and Mutation 
operators on A and B to 

generate E and F 

E and F replace  
C and D  

80 generations 
without improvement 

? 

End run 

Yes 

No 
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Runs 

E 

r 

r 

o 

r 

Observed change in error 

Constant error 

been implemented to avoid genetic drift. Genetic drift is the accumulation to a sub-optimal 

solution in the search space due to stochastic errors. The process of mutation always brings in 

novelty to the population of evolved generations. GP can also assemble teams of models than 

just individual models. As mentioned earlier minimization of the error rates is the criterion for 

selecting the best program (model) in the evolution process. Figure 7-5 illustrates the change of 

fitness (mean error) as the runs increase. Each run has a predetermined number of generations to 

evaluate.  

 

 

 

 

  

 

 

 

 Figure 7-3 Decreasing mean error of the best individual program and the best team 

 

The red line in the plot indicates the error rate of the best model at any given run; where as the 

green line indicates the error rate of the best team comprising of a fixed set of individual models. 

In this research the red line is of importance as the objective is to find the best individual models 

for the regression and the classification problem. The evolution process is externally observed by 

plots as illustrated in Figure 7-5. If the error remains constant over many runs, the model 
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development process can be terminated. It is not advisable to stop the process when a change in 

error is detected. 

 

As stated earlier, the GP is the broader platform under which both classification and regression 

analyses can be implemented. Figure 7-6 shows the overall analytical approach adopted for the 

study.  

 

 

Figure 7-4 Overall analytical approach for model development 

 

The objective achieved in this study is the adaptation of a uniform platform for model 

development for both classification and regression problems. The GP modeling approach is 

GP 

Classification Regression  

    
mutation 

    
crossover

Best Model Best Model 

crossover mutation
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particularly apt for this objective as the model building process is independent of the modeling 

intent.  

 

During the model building process all the input variables are taken into consideration. However, 

all the variables are not included in all the programs as it searches for the programs best fit for 

the classification under study. The selection of variables is essentially analogous to any 

regression model where only the significant variables enter the final model from a host of input 

variables. In GP too, the various models (programs) have only a select subset of variables and 

each program has a different classification rule. The DiscipulusTM software produces a series of 

30 best programs evolved over the runs. The model development process continues till no further 

minimization of error or maximization of classification rate is observed through further runs (see 

Figure 7-5). The best model is chosen which has the least error (for regression problems) or the 

highest classification rate (for classification problems).  

 

The program contains a series of effective register instructions along with introns (non-effective 

instructions). In order to find the simplest set of linear instructions, the researcher has to purge all 

the introns. Once the introns are removed the fitness of the program remains unchanged. The 

final set of instructions is read line by line to get the final form of the program. For development 

and evaluation of the models the primary dataset was split into training and validation datasets 

consisting of 70% and 30% of the data, respectively. 
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7.3 Analyses and Results 

7.3.1 Injury Severity Modeling 

7.3.1.1 Data Preparation 

The crash data as well as the roadway characteristics data were made available through the CAR 

and the RCI system of FDOT respectively for the years 2004 through 2006. As mentioned in 

CHAPTER 5, the corridors were clustered into 4 groups (see Table 5-1). The types of crashes 

used in the study are: i) angle/ turning movement (44,088 crashes); ii) head-on (3709 crashes); 

and iii) rear-end (57,155 crashes). The other type of crashes could not be used as insufficient data 

failed to produce any classification rule for any cluster. Continuous variables like ADT, 

Percentage of trucks, and K-factor (design hour volume as a percentage of ADT) and skid 

(friction resistance multiplied by a factor of 100) were also divided into categories. Their 

relationships with severe/fatal crash occurrence may not be monotonic in nature. Nominal 

variables such as median types, access management, shoulder types, surface types, etc. were also 

used in the data set. In most statistical applications the nominal variables can be defined and the 

dummy variables are created internally. In the present study however, the researcher will have to 

create dummy variables for all the nominal variables with three or more categories. Otherwise 

the GP will treat it as an ordinal variable. A total of 58 variables have been used. 

 

Table 7-1 presents all the independent variables along with the dependent severity variable. The 

present analysis deals with roadway geometric and design factors. The author would like to 
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reiterate that the objective of the study is to understand the classification of injury/no-injury 

crashes as well as severe/non-severe crashes. Apart from that, the researcher wanted to 

investigate the usefulness of using the heuristic GP methodology in the classification problem to 

identify significant variables and their relationship. As an initial approach the researcher has used 

specific roadway geometric and design factors in this particular study, information for which 

were completely available. A broad spectrum of variables is always available and open to 

investigation. However, in this study only certain variables (Table 7-1) have been included 

which broadly belongs to roadway geometric and design category. These variables are generally 

used in engineering studies to develop safety countermeasures. Many of these variables have 

been collected and are unique to this study. As discussed in the ‘analysis and results’ section, the 

results highlight intuitive observations and also help in discovering of interactions among 

variables. All other variables that have not been included are beyond the scope of the present 

study.  
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Table 7-1 Dependent / Independent variables used in crash classification  

Variable Name Variable Symbol Description 
Target or Dependent Variable 

Injury Binary target variable 
  Severity Binary target variable 

Environmental and Roadway Geometric Parameters
Surface_width V0 Width of the surface (Continuous)  

Max_speed V1 Maximum posted speed limit (Continuous)  
Road_cond V2 Road condition at time of crash (Binary (1 = no defects; 

2 = defects)) 
Vision V3 Vision obstruction (Binary (1 = no; 2 = yes)) 

shld_side V4 Shoulder + sidewalk width (Continuous) 
surf_cond V5 Surface condition (Binary (1 = dry; 2 = other)) 

light V6 Daylight condition (Binary (1 = daylight; 2 = other)) 
k_fact V7 Average k – factor (k_fact <= 9.85, k_fact > 9.85) 

trfcway V8 Vertical curvature (Binary (1 = level; 2 = upgrade/ 
downgrade) 

park V9 Presence of parking (Binary (1 = no; 2 = yes)) 
surf_type V10 Type of surface (Binary (1 = black top surface; 2 = any 

other surface)) 
shld_t V11 Type of shoulder (Binary (1 = paved; 2 = unpaved)) 

LIGHTCDE_1 V12 No street light (Binary) 
LIGHTCDE_2 V13 Presence of street light (Binary) 
LIGHTCDE_3 V14 Partial lighting (Binary) 

ACMANCLS_num_0 V15 No median opening (Binary) 
ACMANCLS_num_2 V16 Presence of restrictive median with service roads 

(Binary) 
ACMANCLS_num_3 V17 Presence of restrictive median  (Binary) 
ACMANCLS_num_4 V18 Presence of non-restrictive median  (Binary) 
ACMANCLS_num_5 V19 Presence of restrictive median with shorter directional 

openings (Binary) 
ACMANCLS_num_6 V20 Presence of non restrictive median with shorter signal 

connection (Binary) 
ACMANCLS_num_7 V21 Presence of both restrictive and non-restrictive median 

types (Binary) 
curvclass_1 V22 Presence of curve < 4o (Binary) 
curvclass_2 V23 Presence of 4o <= curve <= 5o (Binary) 
curvclass_3 V24 Presence of 5o < curve <= 8o (Binary) 
curvclass_4 V25 Presence of  8o < curve <= 13o (Binary) 
curvclass_5 V26 Presence of 13o < curve <= 27o (Binary) 
curvclass_6 V27 Presence of curve > 27o (Binary) 

ADT_1 V28 ADT <= 31000 (Binary) 
ADT_2 V29 31000 < ADT <= 40000 (Binary) 
ADT_3 V30 40000 < ADT <= 52500 (Binary) 
ADT_4 V31 ADT > 52500 (Binary) 
t_fact_1 V32 t_fact <= 4.05 (Binary) 
t_fact_2 V33 4.05 < t_fact <= 5.895 (Binary) 
t_fact_3 V34 t_fact > 5.895 (Binary) 

dayandtime_1 V35 Afternoon Peak Weekday (Binary) 
dayandtime_2 V36 Morning Peak Weekday (Binary) 
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dayandtime_3 V37 Friday or Saturday Night (Binary) 
dayandtime_4 V38 Off-peak (Binary) 
pavecond_1 V39 Poor condition (Binary) 
pavecond_2 V40 Fair condition (Binary) 
pavecond_3 V41 Good condition (Binary) 
pavecond_4 V42 Very Good condition (Binary) 

skid_f_1 V43 Skid <= 34 
skid_f_2 V44 34 < skid <= 38 
skid_f_3 V45 Skid > 38 
median_0 V46 No median (Binary) 
median_1 V47 Presence of painted (Binary) 
median_2 V48 Presence of median curb <= 6” (Binary) 
median_3 V49 Presence of median curb > 6” (Binary) 
median_4 V50 Presence of lawn (Binary) 
median_5 V51 Presence of paved median (Binary) 
median_6 V52 Presence of curb <= 6” and lawn (Binary) 
median_7 V53 Presence of curb>  6” and lawn (Binary) 
median_8 V54 Other median (Binary) 

ele_1 V55 Segment related crashes (Binary) 
ele_2 V56 Intersection related crashes (Binary) 
ele_3 V57 Access related crashes (Binary) 

 

Most of the variables as can be observed are binary with a few continuous variables. Most of the 

binary variables are dummy variables which uniquely represent a particular aspect of the original 

nominal variable and hence, the results of the classification could be directly interpreted. The 

descriptions for the variables 16 through 20 described in Table 7-1 have restricted median or non 

restrictive median types. The restrictive medians are those medians which provide a physical 

barrier between the opposing traffic lanes; where as the non restrictive medians are those which 

are painted medians or center lines that do not provide a physical barrier. The variables 55 

through 57 in Table 7-1 provide some new innovative variations to the traditional parameters. As 

explained earlier in CHAPTER 4, traditionally the site location variable has been used by 

researchers to assign crashes to the three roadway elements (segments, intersections and access 

points). However, ‘traffic control’ in combination with the ‘site location’ along with the 

information of the presence or absence of signal, did a superior job in attributing crashes to one 
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of the three roadway elements. Based on these three independent parameters, the variables ele_1, 

ele_2, ele_3 were created to assign the crashes to the three roadway elements, namely segments, 

intersections and access points, respectively. 

 

The author set up a classification problem for the injury occurrence as well as the severity of 

crashes. In a typical classification problem the algorithm develops a set of rules which when 

followed leads to a particular category of the target variable. For example, in crash severity 

analysis when the binary target variable represents severe/ non-severe crashes, the classification 

rule developed will lead to either severe crashes or non-severe crashes. The variables that enter 

the rule are significant and their directionality is critical for understanding the contribution of the 

variable in the analysis. 

 

The first analysis that was carried out was a binary classification problem between injury crashes 

and non-injury crashes. Figure 7-7 shows the primary binary classification problem. It must 

again be noted that a major proportion of non-injury crashes are primarily PDO crashes which 

are known to be under-reported (Abdel-Aty and Keller, 2005; Yamamoto et al., 2008). A 

correction factor has not been included as that will over represent PDO crashes at many sites. It 

is not believed that this issue would affect the results and objectives of this study. 
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Figure 7-5 Binary Classification of Non-injury / Injury related crashes  

 

However, this will be just a part of the analysis. Since the injury related crashes represent all 

types of injuries and the degree of severity ranges from possible injury to death, it should be 

further be split. Keeping in view the nature of the injury two possible grouping of the injury 

related crashes is possible. The crashes with fatalities and incapacitating injuries have been 

grouped together. They are put together into one level as the crashes that involve incapacitating 

injury could easily have been fatal and vice-versa possibly due to vulnerability of the subjects 

involved (Das et al., 2008). The other level includes the crashes with possible injuries and non-

incapacitating injuries. A similar argument that a possible injury could easily have been a non-

incapacitating injury and vice-versa depending on the subjects involved leads us to group the two 

categories together. Figure 7-8 shows the complete picture of the modeling concept adopted in 

the chapter. The first step in the analysis compares injury related crashes with no-injury. The 

second step (nested) analyzes the two broad groups of injury related crashes. This essentially 

carries out the classification of moderate injuries versus severe injuries.  

 

Injury Severity 

No Injury  Injury  
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Figure 7-6 Nested Modeling concept 

 

Each of the best programs chosen for the analysis in hand is a set of effective instructions which 

lead to the final classification rule. Typically for the classification problem the “Class 1 Hit 

Rate”, “Class 0 Hit Rate” and the “Weighted Hit Rate (WHR)” for each of the best programs are 

provided.  Once the criterion is chosen, the set of effective instructions (after the removal of 

introns) form the classification rule for that particular program. In the present study the WHR has 

been used as the criteria to select the classification model. The WHR reported is always for the 

validation dataset. 

 

7.3.1.2 Angle / Turning Movement Crashes 

This particular category of crashes includes all the angle crashes and also the left and the right 

turn crashes. As previously mentioned the corridors have been categorized into 4 clusters. Hence, 

the authors try to explain the results in light of the corridor clusters. This is critical to the 

Injury Severity 

No Injury  Injury  

Possible/ non- Incapacitating/ 
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understanding of the results; especially the inclusion of the variables which enter the program’s 

set of instructions.  

 

 

Figure 7-7 Non-injury / Injury classification rules for angle / turning movement crashes  

 

The boxes in Figure 7-9 indicate the set of instructions (classification rules) that were developed 

for the particular cluster for the angle/ turning movement crashes for the injury and no-injury 

analysis. The classification rule (represented by ‘f(0)’ in the set of instructions) is developed 

line-by-line. The value of the function ‘f(0)’ is initialized to zero. At every step the information 

is updated through any arithmetic or trigonometric modification with either a variable (refer to 

Table 7-1 for all the variables appearing in the results) or a constant. The final value of f(0) is 

L0: f[0]=cos(f[0]); 
L1: f[0]/=v[0]; 
L2: f[0]-=1.25849f; 
L3: f[0]+=v[32]; 
L4: f[0]/=v[0]; 
L5: f[0]+=f[0]; 
L6: f[0]=cos(f[0]); 
L7: f[0]+=-0.4943f; 

L0: f[0]=cos(f[0]); 
L1: f[0]=cos(f[0]); 
L2: f[0]+=v[0]; 
L3: f[0]=-f[0]; 
L4: f[0]+=-1.063283f; 
L5: f[0]+=f[0]; 
L6: f[0]=sin(f[0]); 
L7: f[0]=fabs(f[0]); 
L8: f[0]+=v[0]; 
L9: f[0]-=-1.3605182f; 
L10: f[0]=cos(f[0]); 
L11: f[0]=fabs(f[0]); 

L0: f[0]+=v[40]; 
L1: f[0]*=-0.4943f; 
L2: f[0]-=v[7]; 
L3: f[0]=sin(f[0]); 
L4: f[0]=-f[0]; 
L5: f[0]/=1.25849f; 

L0: f[0]+=v[9]; 
L1: f[0]*=v[1]; 
L2: f[0]=cos(f[0]); 
L3: f[0]+=1.258495330f; 

Angle/turning 

movement 

Cluster 1 

Cluster 2 

Cluster 3 Cluster 4 
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then used to conduct the appropriate classification, based on a threshold value (in this case 0.5). 

The author also reports the WHR for all the programs mentioned here in the study.  

 

To elaborate more, the authors explain one of the results, for example the result for Cluster 1, 

from Figure 7-9. The WHR for the program is 60.4106 which imply that 60.4106% of the cases 

were classified correctly. As mentioned earlier, at the start of the function the f(0) is initialized to 

zero. In the first line the cosine value of f(0) is computed. The resulting function is then divided 

by V0 (surface width) followed by subtracting a constant and subsequently adding V32 (truck 

factor < 4.05) again to the function. The value of f(0) is thus calculated at every step and the final 

value is used for classification. In this study if the final value of f(0) is less than 0.5 then it is 

classified as a non-injury crash and as a injury crash, otherwise.  

 

As mentioned earlier the corridors in Cluster 1 (1.009 – 2.89 miles) are the smallest in length. 

Crashes are most likely to be without injury if the surface width (V0) is high. Higher surface 

width gives the driver more maneuvering space and thus more opportunity to take crash 

avoidance maneuver. Even if the crash does take place, it will mostly likely not to result in an 

injury. It is interesting to note that even low percentage of trucks on the corridors can result in 

injuries if a crash occurs. Seriousness of crashes with trucks and other vehicles has been well 

documented by Bjornstig et al. (2008). Interestingly in Cluster 2 (2.898 – 5.729 miles) (WHR = 

57.8271) corridors higher surface width increases the likelihood of injury in a crash. In Cluster 3 

(5.762 – 10.556 miles) (WHR = 57.7476) corridors, fair pavement condition (V40) increases the 

possibility of injury. This indicates that pavement condition has to be good to excellent for safe 
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driving. Deteriorated pavements put the drivers at risk for a crash due to sudden unacceptable 

changes in the level and also due to poor traction.  In Cluster 4 (10.644 – 78.293 miles) (WHR = 

59.514) corridor injuries are more likely to occur when parking is available on higher speed limit 

segments (V9* V1). Emphasis on the restrictions of on-street parking has been highlighted in the 

work of Zegeer et al. (1994).  

 

 

Figure 7-8 Non-severe / severe classification rules for angle / turning movement crashes  

 

Figure 7-10 illustrates the results of the classification between severe and non-severe crashes. 

For Cluster 1 (WHR = 83.2677) crashes V52 (variable indicating the presence of a median with 

curb <= 6” and lawn) and V5 (variable indicating dry surface condition) enter the classification 

rule developed. A careful observation at the entire rule for Cluster 1 indicate that the presence of 

L0: f[0]+=v[52]; 
L1: f[0]+=v[5]; 
L2: f[0]=cos(f[0]); 
L3: f[0]*=f[0]; 
 

  L0: f[0]+=-0.49431f; 
  L1: f[0]*=v[4]; 
  L2: f[0]+=0.91779f; 

No classification 
rule evolved 

L0:f[0]+=-0.494312047f; 
L1: f[0]*=f[0]; 
L2: f[0]-=v[41]; 
L3: f[0]*=v[24]; 
L4: f[0]-=-0.494312047f; 

Angle/turning 

movement 

Cluster 1 Cluster 2 

Cluster 3 Cluster 4 
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median with lawn and curb and also dry surface condition decrease the severity of the crash. The 

cosine function applied on f(0) reduces the value of f(0) when f(0) is higher. Das et al. (2008) 

also found dry surface conditions to favor less severe crashes probably because of resultant better 

friction the car is more in control. Hence, even if the crash occurs, the drivers could still be in 

control. The presence of lawn in the median could help in preventing multi-vehicle which more 

often results in severe crashes. In Cluster 2 (WHR = 81.944), as the variable V4 (shoulder plus 

side walk width) increases the resulting crash tends to be less severe. Fatal crash rates are found 

to decrease with wider shoulder width (Kweon and Kockelman, 2005). Cluster 4 (WHR = 

83.5804) results indicate that with good pavement condition (V41) the crash severity will 

decrease. V24 (curve of roadway between 5o and 8o) also indicate low curvature. The entire rule 

indicates that with this curvature range the crashes occurring will be less severe. Souleyrette et 

al. (2001) found that the crash frequency had a direct association with the degree of curvature on 

horizontal surfaces. 

 

7.3.1.3 Head-on Crashes   

The results for the two types of analysis for the head-on crashes (one for injury and non-injury 

crashes; the other for severe and non-severe crashes) are illustrated in Figure 7-11 and Figure 

7-12, respectively. In Cluster 1 (WHR = 70.1923) low skid values (V43) result in increased 

likelihood of injury from a crash. Low skid values indicate poor traction control on roads which 

would increase the chances of loosing control of the vehicle during the event of a crash and thus 

leading to injury. Reduced friction could also lead to potentially dangerous head injuries on the 
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roadways (Finan et al., 2008). It is interesting to note that in Cluster 2 (WHR = 61.7116) the 

presence of non-restrictive median at sharper curves (V18* V27) lead to decreased probability of 

injuries. In Cluster 3 (WHR = 61.8879) paved median (V51) is found to decrease the injuries. In 

Cluster 4 (WHR = 63.2472) crashes occurring during off-peak periods on roadways with 

surfaces other than blacktop (V38/ V10) decrease the injury probability. Results in Cluster 2 and 4 

of head-on type crashes also indicate the capability of the GP methodology to discover 

interaction terms in the injury/no-injury classification. 

 

 

Figure 7-9 Non-injury / injury classification rules for head-on crashes 

L0: f[0]+=v[43]; 
L1: f[0]=cos(f[0]); 
L2: f[0]*=f[0]; 
L3: f[0]+=f[0]; 
L4: f[0]*=f[0]; 
L5: f[0]=-f[0]; 
L6: f[0]+=1.25849f; 
L7: f[0]*=v[0]; 
L8: f[0]=cos(f[0]); 
L9: f[0]=cos(f[0]); 
L10: f[0]/=1.2584f; 
L11: f[0]-=1.2584f; 
L12: f[0]=fabs(f[0]); 

L0: f[0]=cos(f[0]); 
L1: f[0]*=v[27]; 
L2: f[0]/=-0.4943120f; 
L3: f[0]*=v[18]; 
L4: f[0]=cos(f[0]); 

L0: f[0]-=v[51]; 
L1: f[0]+=v[8]; 

L0: f[0]=cos(f[0]); 
L1: f[0]*=v[57]; 
L2: f[0]=cos(f[0]); 
L3: f[0]/=v[10]; 
L4: f[0]+=v[38]; 
L5: f[0]+=-0.49431204f; 
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Figure 7-10 Non-severe / severe classification rules for head-on crashes  

 

The results for the severity analysis are illustrated in Figure 7-12. In this analysis the Clusters 1 

and 2 are combined to form one group (for the need of sufficient data). For Clusters 1 and 2 

(WHR = 84.5273) variables like V23 (curvature between 4o and 5o) and V28 (ADT <= 31,000) 

increase the chances of severe crashes. Lower ADT means increased possible maneuvers during 

driving and hence the increased chances of potential conflicts. Lower ADT also indicates higher 

speeds, given a conflict occurs, and would potentially result in severe crashes. Restrictive 

openings in medians (V16) also tend to increase the severity of crashes. However the crash 

severity would decrease with increase in surface width. This is in consistence with findings by 

Petritsch et al. (2007) who did an evaluation of geometric and operational characteristics for the 

safety of six-lane divided highways for the FDOT. Again in Cluster 3 (WHR = 82.1027), the 

presence of wide shoulder and side walk (V4) decrease the severity of crashes. If the crash has 

L0: f[0]-=-1.3605182f; 
L1: f[0]*=v[54]; 
L2: f[0]+=v[23]; 
L3: f[0]*=f[0]; 
L4: f[0]+=v[28]; 
L5: f[0]+=v[16]; 
L6: f[0]+=v[16]; 
L7: f[0]/=v[0]; 
L8: f[0]-=-1.3605182f; 

L0: f[0]=cos(f[0]); 
L1: f[0]-=v[4]; 
L2: f[0]*=v[35]; 
L3: f[0]=sin(f[0]); 
L4:f[0]+=f[0]; 

L0: f[0]-=v[43]; 
L1: f[0]+=v[28]; 
L2: f[0]*=f[0]; 
L3: f[0]+=v[29]; 
L4: f[0]=-f[0]; 
L5: f[0]-=-0.4943120f; 
L6: f[0]-=v[35]; 
L7: f[0]*=v[53]; 
L8: f[0]+=v[55]; 
L9: f[0]*=v[17]; 
L10: f[0]*=v[34]; 
L11: f[0]-=-0.494312f; 

Head-on  

Crashes 

Clusters 1 

Cluster 4 

Cluster 3 
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occurred during the afternoon peak period (V35) then the resulting crash would be non-severe. 

The results are in line with a previous work by the author (Das et al., 2008). In Cluster 4 (WHR 

= 81.7513), again ADT less than 40,000 (V28 and V29) leads to higher severity of injuries. As in 

Cluster 3, this cluster also has less severe injuries during afternoon peak traffic. Presence of curb 

and lawn median (V53) helps avoid crossover head on crashes or reduce the intensity of it. Hence 

it would reduce the severity. If a head on crash occurs on the segment (V55) then it would be 

more severe than if it would have occurred at any other roadway element. This could be 

attributed to higher vehicular speeds on segments than at intersections or access points. 

Restrictive opening and higher truck factor (V17 and V34) results in higher severity of crashes.  A 

study by Andreassen (2003) in Australia found that there are areas on corridors which should not 

have a higher truck percentage. Likewise the corridors with higher truck percentage should be 

flagged and more administrative measures should be taken to reduce the risk of crash occurrence 

and imminent severity due to crashes involving trucks. 

 

7.3.1.4 Rear-end Crashes 

The results for the two types of analysis for the rear-end crashes (one for injury and non-injury 

crashes; the other for severe and non-severe crashes) are illustrated in Figure 7-13 and Figure 

7-14 respectively. In Cluster 1, the presence of paved and curbed median increase the likelihood 

of injury, while increase in maximum posted speed limit increase the probability of injury 

crashes on Cluster 2 corridors. In Cluster 3 rear-end crashes at intersections (V56) are more injury 

prone even under good condition of the pavement (V41). Surprisingly higher posted speed limits 
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tend to be safer in terms of injury occurrence for Cluster 4 corridors. One possible explanation 

could be that on longer stretches of roadway segments the driver gets used to the speed limit and 

after a while is more accustomed to the high speed traffic around it. Hence the injury probability 

might be reduced as the driver is more aware of the surrounding. The WHRs for the Clusters 1 

through 4 are 56.3661, 53.0926, 52.495 and 54.1009 respectively. 

 

 

Figure 7-11 Non-injury / injury classification rules for rear-end crashes  

 

L0: f[0]+=v[52]; 
L1: f[0]-=-0.4943120f; 
L2: f[0]=sqrt(f[0]); 
L3: f[0]*=v[32]; 
L4: f[0]=-f[0]; 
L5: f[0]+=v[51]; 
L6: f[0]+=v[52]; 
L7: f[0]*=f[0]; 
L8: f[0]*=f[0]; 
L9: f[0]-=-0.4943120f; 

L0: f[0]-=v[1]; 
L1: f[1]-=f[0]; 
L2: f[0]-=f[0]; 
L3: f[0]=cos(f[0]); 
L4: f[1]+=f[0]; 
L5: f[0]+=f[1]; 
L6: f[0]=sqrt(f[0]); 
L7: f[0]=sin(f[0]); 

L0: f[0]+=v[1]; 
L1: f[0]*=-1.360518f; 
L2: f[0]+=v[56]; 
L3: f[0]=sin(f[0]); 
L4: f[0]*=v[41]; 

L0: f[0]+=-0.4943f; 
L1: f[0]/=v[1]; 
L2: f[0]=fabs(f[0]); 
L3: f[0]=sqrt(f[0]); 
L4: f[0]=cos(f[0]); 
L5: f[0]+=-0.4943f; 
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Figure 7-12 Non-severe / severe classification rules for rear-end crashes 

 

In Figure 7-14 the results for the severity analysis are shown. In Cluster 1 (WHR = 91.8455), 

crashes related to segment (V55) and on roadways with curb and lawn median (V52) give rise to 

increased severity. In Cluster 3 (WHR = 91.4834) presence of lawn only median (V50) leads to 

decreased severity of crashes. Lawn medians are generally wide medians. Wider medians lead to 

decreased crash rate (Gettis et al., 2005). Even though lawn medians are typically safer for head-

on type of crash, yet the very presence of lawn medians can make the drivers make a move 

towards the lawn in case of imminent rear-end crash situation. This is different from the result 

obtained in Cluster 1, where curb and lawn median increase the severity. The presence of the 

curb makes it difficult for the driver to use the median space effectively for the drivers to avoid 

crashes. This could be a possible explanation as to why the crashes result in higher severity in 

L0: f[0]+=v[55]; 
L1: f[0]*=v[52]; 
L2: f[0]-=-1.3605182f; 

No classification 
rule evolved 

 

L0: f[0]+=-0.494312f; 
L1: f[0]=fabs(f[0]); 
L2: f[0]*=v[50]; 
L3: f[0]-=0.9177978f; 
L4: f[0]-=-1.0632834f; 

L0: f[0]+=v[31]; 
L1: f[0]+=v[47]; 
L2: f[2]-=f[0]; 
L3: tmp=f[2]; 
f[2]=f[0]; f[0]=tmp; 
L4: f[0]-=v[43]; 
L5: f[0]-=-0.49431f; 
L6: f[0]*=v[13]; 
L7: f[0]-=-0.49431f; 
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Cluster 1. In Cluster 4 (WHR = 89.4289) It was observed that V31 (ADT>= 52,000) causes 

increased severity of crashes. Thirty two percent of the crashes have speeds greater than 38 mph 

and thus indicating that a large number of vehicles were travelling at higher speeds (the number 

is large as the ADT is high). Thus crashes occurring at higher speeds would more likely lead to a 

severe crash. This indicates a higher speed variance. For the majority of slower vehicles (< 38 

mph) severe crashes may occur due to the random aggressive behavior of drivers trying to make 

their way through a relatively low speed corridor. Nevarez et al. (2009) found ADT per lane to 

be significantly related to crash severity. A study by Pande and Abdel-Aty (2009) also finds 

severe rear-end crashes to be significantly related to ADT. A possible explanation to that could 

be the fact that the rear-end crashes, considered in this study, are occurring on high-speed 

arterials. In addition to that it must be observed that the severity of rear-end crashes is not 

entirely dependant on external factors. Rigid seat backs also contribute significantly to severity 

of injuries in rear-end crashes (Warner and Warner, 2008). Interestingly with the absence of 

street parking (V13) the severity is found to diminish.  

 

7.3.1.5 Concluding Remarks on Injury Severity Modeling 

As stressed earlier in the study, classification is critical to our understanding of the variables of 

significance and their contribution to the safety problem at hand. In the present study the authors 

have set up a classification problem for the injury as well as severity of crashes. Typically in a 

classification problem the algorithm develops a set of rules which when followed leads to a 

particular category of the target variable. For example, in crash severity analysis when the binary 
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target variable represents severe/ non-severe crashes, the classification rule developed would 

lead to either severe crashes or non-severe crashes. 

 

Classification using trees has been carried out since Breiman et al. (1984) came up with the 

Classification and Regression Tree (CART) algorithm. Different algorithms have been tried ever 

since to develop classification models or rules. The advantage or the feature that gives genetic 

programming the edge over any other existing classification algorithm is the fact that numerous 

models can be developed for the same dataset. The use of the concept of biological evolution 

helps the algorithm develop numerous models (by its capacity to perform multiple runs with 

randomized parameter settings), through the operators like crossover and mutation. A lower 

crossover frequency and a higher mutation frequency are implemented to prevent genetic drift 

from taking place. Genetic drift is the accumulation to a sub-optimal solution in the search space 

due to stochastic errors. The process of mutation always brings in novelty to the population of 

evolved generations. GP can also assemble teams of models than just individual models which 

makes it better than most classification algorithms which primarily work on just individual 

models. The individual models or teams model have been observed to have a lower error rate 

than other standard classification algorithms. Percent correct classification achieved on the 

validation data set for severe/non severe models were as high as 90% and more as indicated by 

the WHR values.  

 

As mentioned earlier the two types of analyses carried out in the study includes: 1) injury and 

non-injury crashes; and 2) severe and non-severe crashes. Some of the results confirm to the 
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traditional well established patterns where as certain other results are not so common and do not 

confirm to convention. For angle/ turning movement crashes presence of parking and higher 

posted speed limits are responsible for more injury related crashes. Even low percentage of 

trucks can increase the chance of injury prone crashes. ‘Curb and lawn’ median and dry surface 

conditions decrease the severity of crashes where as poor pavement condition result in more 

severe crashes. Wider shoulders along with sidewalk also tend to make the roads safer from a 

severity point of view.  

 

In case of head on crashes low ADT and median openings are the leading operational and 

geometric factors for severe crashes. Again wide shoulder and sidewalk result in less severe 

crashes. Crashes occurring on afternoon weekday peak periods also tend to be less severe. Lower 

skid resistance and the presence of ‘curb and lawn’ medians are again found to diminish the 

severity of the crash. Higher truck factor also results in increased severity of head-on crashes. 

Low skid values increase the injury probability of a crash while crashes occurring during off-

peak periods are less injury prone.  

 

Rear-end crashes at intersections are more likely to be injury prone as well as those at paved and 

curbed median segments of the roadways. Unlike the angle/ turning movement and the head-on 

crashes, the ‘lawn and curb’ median causes increased severity in rear-end crashes and similarly 

for higher ADT values. Absence of street parking also decreases the severity of rear-end crashes.  
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The results from the genetic programming classification are intuitive and their association with 

severity may be explained. Certain known results about severity of crashes have been confirmed 

while some new information is discovered about others. The ‘lawn and curb’ median are found 

to be safe for angle/ turning movement crashes and not so safe for rear-end crashes. Vision 

obstruction is a leading factor of severe crashes. Dry surface conditions, good pavements also 

reduce the severity of crashes. On-street parking, higher posted speed limits and lighting 

conditions do play a role in both injury related crashes and severe crashes.  

 

It can be observed from the results that a lot of interaction terms are discovered in the 

classification approach for injury/no-injury and severe/non-severe crashes. The heuristic 

approach that GP applies has been observed to shed new light on the interaction between 

variables discussed in this study.  

 

As it can be observed most of the variables of concern relate to geometric and operation factors. 

Event specific variables have not been included in this study for the sake of interpretability, 

generalization and the objectives of this study. However, it should be noted that the analysis 

could be carried with only those variables or by mixing them with geometric and traffic 

parameters. This could be a part of future investigation. On-street parking has been found to be a 

hazard for severe injury. Steps should be taken to either remove the facilities for parking or in the 

case where it is not possible, to restrict the parking hours. Pavement condition should be 

improved and wherever possible, ‘curb and lawn’ median should be designed. Higher truck 

percentage is found to increase severity; hence steps such as lane restriction for trucks or 
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rerouting them from flagged corridors should be taken. Betterment of lighting conditions on the 

roadways is always desired. Vision obstruction has traditionally been a problem; that however, is 

not only due to external factors. Nevertheless, transportation authorities should always take 

design initiatives for the drivers to have a clear view of the surroundings.  

 

7.3.2 Crash Frequency Modeling 

7.3.2.1 Data Preparation 

Since occurrence of crash is a random event, all factors remaining constant, any given point has 

an equal probability of crash occurrence. Hence, the investigator divided the urban arterials into 

equal sections of length 0.5 miles, unlike the clusters of corridors prepared for the classification 

problem. In this part of the study only specific roadway geometric and design factors have been 

used, information for which, were completely available. Corridors with no crashes have also 

been included. The traffic and roadway geometric parameters for those corridor sections, the data 

for which was not available, have been imputed with data points generated randomly within the 

available range. Table 7-2 lists all the variables used in this analysis. 
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Table 7-2 Dependent / Independent variables used in crash frequency modeling  

Variable Name Variable Symbol Description 
Target or Dependent Variable 

Freq Frequency of crashes 
Continuous Independent Variables

Mean_surface_width V0  Surface width (Continuous)  
Mean_shld_width1 V1  Shoulder width (Continuous) 

maxSpeed V2 maximum posted speed limit (Continuous) 
mean_sec_adt V3  ADT (Continuous) 
mean_avg_t V4 Truck factor (Continuous) 
mean_skid V5 Skid resistance (Continuous) 

Categorical Independent Variables
dry_surface_cond V6 Indicator for dry surface condition (Binary) 
day_light_cond V7 Indicator for daylight crashes (Binary) 
clear_weather V8 Indicator for clear weather crashes (Binary) 

blacktop_surface_type V9 Indicator for blacktop surface (Binary) 
no_defects_on_road V10 Indicator for no defects on roadway (Binary) 

vision_no_obs V11 Indicator for vision obstruction (Binary) 
MPW V12 Indicator for crashes in weekday morning peak (Binary) 
APW V13 Indicator for crashes in weekday afternoon peak 

(Binary) 
FSN V14 Indicator for crashes on Friday/ Saturday night (Binary) 

 

Typically for regression analyses the R2 value and error rate is reported. In this study the 

researcher chose the models with least error. Also, the same programs had the highest R2 value. 

The crash analyses were carried out for three separate site locations, namely: 1) segments; 2) 

signalized intersections; and 3) access points. Separate models for mid-block segment related, 

signalized intersection related and access point related crashes for each crash type could help 

assess the safety situation better than by just having one model for all the roadway elements. For 

example, rear-end crashes on mid-block segments and signalized intersections, may have similar 

set of significant variables but the model form might be different. Angle crashes on mid-block 

segments might be affected by different roadway elements compared to the angle crashes on 

signalized or un-signalized intersections. Unilateral assumption of one model form explaining 

the crash occurrence phenomenon on all locations certainly makes the problem simpler but limits 
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the scope of understanding. The GP methodology used in this study has enabled the authors to 

establish different model forms for the different roadway elements. The overall model 

development structure is given in Figure 7-15. All the models were compared to the traditional 

Negative Binomial (NB) model. The mean square error (MSE) has been used as the metric to 

compare GP and NB models. 

 

 

Figure 7-13 Overall model development structure 

 

In the following sub-sections, which would discuss on the various models for different types of 

crashes, tables will be presented highlighting the percentage use of variables given in Table 7-2. 
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The percentage use is indicative of how frequently a particular variable has been used in the 

overall model development process.   

7.3.2.2 Angle / Turning Movement Crashes 

Most angle crashes occur near signalized intersections as compared to access points and mid-

block segments. As previously argued the model form for the angle crashes should be different 

for the different roadway elements. In order to maintain uniformity the author first reports the 

mid-block segment related crash model followed by the signalized intersection related crashes 

and access point related crashes’ models. The segment related crashes’ model is given in 

Equation 7-1. The MSE for the model is 0.921 while that of corresponding NB model is 0.950.  
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 Table 7-3 gives the percentage use of the variables in the overall development of the segment 

model for angle/ turning movement crashes.  

 

Table 7-3 Variable use for segment model of angle/ turning movement crashes 

Variable Frequency 
V0  0.97 
V1 0.10 
V2 0.23 
V3 0.37 
V4 0.13 
V5 0.27 
V6 0.97 
V7 0.40 
V8 0.30 
V9 0.73 
V10 1.00 
V11 0.90 
V12 1.00 
V13 1.00 
V14 1.00 

 

The signalized intersection model is as follows:  

 

Equation 7-2 
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The signalized intersection related crashes’ GP model had a MSE of 29.794 while the traditional 

NB model for this case is 29.354. The frequency of use of the variables is given in Table 7-4. 

 

Table 7-4 Variable use for signalized intersection model of angle/ turning movement crashes 

Variable Frequency 
V0  0.83 
V1 0.23 
V2 0.37 
V3 0.27 
V4 0.07 
V5 0.60 
V6 1.00 
V7 1.00 
V8 0.80 
V9 1.00 
V10 0.77 
V11 1.00 
V12 1.00 
V13 1.00 
V14 0.50 

 

The access point related crashes’ model is given in Equation 7-3. The MSE is observed to be 

18.220 while the NB model outperforms with a MSE of 17.508. 

 

Equation 7-3 
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a1=0.288; a2=1.501 

 

 

Table 7-5 indicates the frequency of use of variables in the development of the above model. 
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Table 7-5 Variable use for access point model of angle/ turning movement crashes 

Variable Frequency 
V0  0.83 
V1 0.40 
V2 0.07 
V3 0.40 
V4 0.13 
V5 0.30 
V6 1.00 
V7 0.97 
V8 0.63 
V9 0.87 
V10 0.40 
V11 0.90 
V12 0.93 
V13 0.93 
V14 0.67 

 

The models represented by Equation 7-1 through Equation 7-3 exhibits the complex relationship 

governing the angle crash occurrence at the different roadway element. The higher surface width 

(V0) leads to less angle crashes at mid-block segments. Higher surface enables the driver to have 

more space for maneuvers that could lead to crash avoidance. Afternoon and morning peak 

periods in conjunction with no obstruction of vision and dry surface condition on blacktop 

surface roads leads to fewer angle crashes at signalized intersections. Higher skid values (V5) 

leads to fewer angle crashes at both signalized intersections and access points. This result is 

intuitive and is supported by past research (Noyce et al., 2007). Higher traffic volume (V3) 

intuitively reflects more number of angle crashes and the results confirm to it. Lower maximum 

posted speed limit (V2) leads to higher number of angle crashes at signalized intersections which 

might indicate the presence of aggressive drivers on the road.  
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7.3.2.3 Head-on Crashes 

Head-on crashes tend to occur when opposing traffic are close in lateral displacement. The mid-

block segment crash model is presented in Equation 7-4. MSE value of 0.1 was observed for the 

GP model as compared to a MSE value of 0.236 of the equivalent NB model.  

 

Equation 7-4 
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The frequency of use of variables for the segment model of head-on crashes is given in the Table 

7-6 
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Table 7-6 Variable use for segment model of head-on crashes 

Variable Frequency 
V0  0.13 
V1 0.17 
V2 0.30 
V3 0.17 
V4 0.50 
V5 0.47 
V6 0.17 
V7 0.43 
V8 0.17 
V9 0.97 
V10 1.00 
V11 0.53 
V12 0.67 
V13 0.57 
V14 1.00 

 

The signalized intersection related crashes’ model is as given in Equation 7-5. 
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The above GP model given by Equation 7-5 has a MSE of 0.06 while the NB model has a MSE 

of 0.154. Table 7-7 shows the values for frequency of use of variables in the above model.  

 

Table 7-7 Variable use for signalized intersection model of head-on crashes 

Variable Frequency 
V0  0.63 
V1 0.33 
V2 0.17 
V3 0.07 
V4 0.53 
V5 0.27 
V6 1.00 
V7 0.33 
V8 1.00 
V9 1.00 
V10 1.00 
V11 0.97 
V12 0.93 
V13 0.80 
V14 0.33 

 

The access point related crash model is given Equation 7-6.  

 

Equation 7-6 
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a1=1.505; a2=-0.091; a3=1.531; a4=0.033; a5=1.048 

 

Table 7-8 presents the frequency of use for the variables used in the model development process 

for access point related head-on crashes.  

 

Table 7-8 Variable use for access point model of head-on crashes 

Variable Frequency 
V0  0.33 
V1 0.23 
V2 0.53 
V3 0.17 
V4 0.70 
V5 0.10 
V6 0.40 
V7 0.33 
V8 0.43 
V9 1.00 
V10 1.00 
V11 1.00 
V12 0.60 
V13 0.57 
V14 1.00 
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The MSE of the GP model is 0.081 while the NB model has a MSE of 0.262. Models represented 

by Equation 7-4 through Equation 7-6 for the head-on crashes shows that traffic conditions 

during the Friday and Saturday night peak period (V14) reduce the frequency for head-on crashes. 

This goes against intuition as this is the time of the week where drivers will be mostly speeding 

or could be under the influence. A possible explanation could be that a lower ADT on the 

corridors and the data reflects that 50% of the roadways have an ADT of less than 12,950. 

Higher average truck factor (V4) increases the instances of head-on crashes on mid-block 

segments and signalized intersections. In a previous work it had been investigated that increased 

percentage of trucks leads to fatal head-on crashes (Abdelwahab and Abdel-Aty, 2004). Day 

light and good road condition decreases the instances of head on crashes near access points. At 

signalized intersections, the higher the surface width the higher the number of head-on crashes. 

The frequency of head-on crashes is observed to increase with higher skid resistances values on 

mid-block segments (V5). The same observation is also reported during day light conditions (V7).  

 

7.3.2.4 Rear-end Crashes 

The mid-block segment related crash model for rear-end crashes given in Equation 7-7 reveals 

the complex structure of the crash occurrence phenomenon. The MSE of the model is 11.234 

where as the corresponding NB model has an MSE of 12.615. 

 

Equation 7-7 
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Where, 

( ){ }[ ] 13912413754313127 VVVaVVaaaVVVAB −×−−−+×−×−−+=  

( ){ }[ ] 5431212
2

131 aaaVaaaVaA ×−×−×+×=  

a1=0.105; a2=-0.828; a3=1.048; a4=1.779; a5=1.253 

 

Table 7-9 for frequency of use of variables used in the above model development is given below.  

 

Table 7-9 Variable use for segment model of rear-end crashes 

Variable Frequency 
V0  0.50 
V1 0.03 
V2 0.10 
V3 1.00 
V4 0.23 
V5 0.40 
V6 0.90 
V7 0.87 
V8 0.07 
V9 0.30 
V10 0.63 
V11 1.00 
V12 0.90 
V13 1.00 
V14 0.23 

 

The signalized intersection related crash model is as given by Equation 7-8. The MSE for the GP 

model is 57.632. The NB model in this particular case has a MSE of 81.808.  

 

Equation 7-8 
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Where, 

( )[ ]{ } 3873231 221 VVVVaVAaB A +××+××−×−=  

1312102 VVVA −−=  

a1=0.995; a2=1.984; a3=0.003 

 

Table 7-10 representing the frequency of use of the signalized intersection model is given below.  

 

Table 7-10 Variable use for signalized intersection model of rear-end crashes 

Variable Frequency 
V0  0.60 
V1 0.33 
V2 0.63 
V3 1.00 
V4 0.20 
V5 0.73 
V6 0.97 
V7 0.73 
V8 0.90 
V9 0.23 
V10 0.93 
V11 0.70 
V12 0.27 
V13 0.70 
V14 0.23 

 

Finally, the access point related model for the rear-end crashes is:  

 

Equation 7-9 
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Where, 
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Where 

a1=0.003; a2=1.048; a3=1.451; a4=0.317; a5=1.063; a6=0.136; a7=0.918; a8=1.501; a9=1.988; 

a10=0.634. The frequency of use of variables is given in Table 7-11.  

 

Table 7-11 Variable use for access point model of rear-end crashes 

Variable Frequency 
V0  0.70 
V1 0.40 
V2 0.23 
V3 0.43 
V4 0.17 
V5 0.33 
V6 1.00 
V7 0.97 
V8 0.70 
V9 0.97 
V10 0.77 
V11 0.97 
V12 1.00 
V13 1.00 
V14 0.27 

 

For the above GP model given by Equation 7-9 the MSE is reported to be 10.264. In this case the 

NB model was found to perform marginally better with an MSE of 10.064. ADT (V3) is 

significant in all the three model forms along with dry surface condition (V6) and day light 

condition (V7). The dry surface conditions probably indicate fine weather and more vehicles on 

the road. Hence improper maneuvers could result in higher number of collisions. Research has 
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shown that slippery road conditions lead to a higher probability of crash avoidance maneuvers as 

drivers would drive more cautiously during unfavorable conditions (Yan et al., 2008). It is 

interesting to note that when there is no vision obstruction (V11) and during day time the rear-end 

crash frequency increases on segments and access points but not at signalized intersections. The 

same effect is also found for higher ADT. In any stretch of road where the ADT does not vary 

much, the result could be difficult to explain. However, speed variances will be more prominent 

in the mid-block segments and the access points than near the signalized intersections which 

increase crash risk (Pande et al., 2005). The ADT coupled with the speed variances could be a 

possible cause of the observation.  Morning and afternoon peak periods (V12, V13) are observed 

to have fewer occurrences of rear-end crashes at all the roadway elements. A particular 

interaction term reflects that roadways with no defects (V10) and higher surface width (V0) would 

have less rear-end crashes near access points at higher posted speed limits (V2). For convenience 

of the reader Table 7-12 presents all the variables entering the final models discussed in the 

study.  
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Table 7-12 Variables entering the various GP models 

 Variables 
 

Angle 
Segment Related V0, V6, V7, V9, V10, V11, V12, V13, V14 

Signalized Intersection 
Related 

V2, V3, V5, V6, V7, V8, V9, V10, V11, V12, V13 

Access Point Related V3, V5, V6, V7, V9, V11, V12, V13, V14 
 

Head-on 
Segment Related V4, V5, V7, V9, V14 

Signalized Intersection 
Related 

V0, V1, V4, V5, V6, V8, V9, V10, V11, V12, V13, 
V14 

Access Point Related V0, V1, V3, V6, V7, V8, V9, V10, V11, V12, V13, 
V14 

 
Rear-end 

Segment Related V3, V6, V7, V9, V10, V11, V12, V13 
Signalized Intersection 

Related 
V3, V5,V6, V7, V8, V9, V10, V12, V13 

Access Point Related V0, V2, V3, V5, V6, V7, V8, V9, V10, V11, V12, 
V13 

 

Table 7-13 depicts the MSE values of the GP models as well as the traditional NB models 

developed. The highlighted models are the ones with the lower MSE values.  

 

Table 7-13 Observed validation dataset MSE for GP and NB models 

 GP NB 
 

Rear-end 
Segment Related 11.234 12.615 

Signalized Intersection 
Related 

57.632 81.808 

Access Point Related 10.264 10.064 
 

Angle 
Segment Related 0.921 0.95 

Signalized Intersection 
Related 

29.794 29.354 

Access Point Related 18.220 17.508 
 

Head-on 
Segment Related 0.1 0.236 

Signalized Intersection 
Related 

0.06 0.154 

Access Point Related 0.081 0.262 
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7.3.2.5 Concluding Remarks on Crash Frequency Modeling 

The methodology, which allows the researcher to choose among millions of programs, develops 

the models based on the simple concept of evolutionary biology. The developed models not only 

explain the data better but also show how the variation in parameter values affects the crash 

occurrence. The GP methodology uses the concepts of crossover and mutation to evolve models 

over time and available population. A lower crossover frequency and a higher mutation 

frequency are implemented to prevent genetic drift from taking place. Genetic drift is the 

accumulation to a sub-optimal solution in the search space due to stochastic errors. The process 

of mutation always brings in novelty to the population of evolved generations. GP can also 

assemble teams of models than just individual models which makes it better than most regression 

algorithms which primarily work on just individual models. 

 

As can be observed, all the nine successfully developed GP models show the complex structure 

governing the phenomenon of the crash occurrence. The GP outperform the NB in terms of 

lower MSE values (for validation dataset only) in six of the nine models discussed in the study. 

A paired t-test for the MSE values for all the GP and NB models showed that there was a 

significant decrease in MSE values (83% confidence level). One of the reasons could be that the 

NB models work better with all continuous variables and in this present study we had a mix of 

continuous as well as categorical variables. The GP model builder which essentially evaluates 

through a host of models gives a new alternate non-linear structure even with categorical 

variables. As mentioned earlier the GP method optimizes the selection of the regression models 

over multiple runs and the selected model is then used for crash frequency prediction.  
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The parameter behavior discovered may not always be intuitive and the authors have tried their 

best to explain the plausible causes.  For examples, the dry surface condition leads to increase 

frequency of crashes. Even under perfect conditions of driving, the driver may loose focus, thus 

resulting in improper maneuvers leading to crashes. Similarly it was regularly observed that 

crashes occur less during the dark hours. Though on roadway geometric, traffic and 

environmental factors are used in model development, the results also help in understanding 

driver characteristics. For example, Lower maximum posted speed limit leads to higher number 

of angle crashes at signalized intersections which indicates the presence of aggressive drivers on 

the road. The complex interaction terms appearing in the models are crucial to increased 

prediction accuracy, although they make the models more difficult to explain.  

 

For any particular crash type, no single model based on one particular distribution could provide 

enough insight to understand the safety situation. The GP modeling approach gives the 

researcher independence for model development without restrictions of the distribution of data. 

The developmental structure (see, Figure 7-15) allows for separate models for mid-block 

segment related, signalized intersection related and access point related crashes for each crash 

type. This is important as the relationship of parameters explaining the frequency of any crash 

type on mid-block segments should be different from those occurring on signalized intersections 

or access points. However, the system of models developed allows cross referencing of the 

results among the roadway elements. With this twin approach the authors have been successful 

in building models which have proved to be a good alternative to the traditional methods of crash 

frequency estimation. 
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Readers could question the purpose of the comparison of the GP model with the basic NB model. 

The author would like to clarify that the purpose of the study is to introduce GP modeling into 

prediction of crash estimates and are not delving into advanced NB models (Lord et al., 2005; 

Miaou and Lord, 2003).    
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CHAPTER 8. GRAPHICAL PERCEPTION AND SENSITIVITY 
ANALYSES 

8.1 Graphical Understanding and Introduction to Sensitivity Analysis 

It is observed from the crash frequency modeling results in the previous chapter (see 7.3.2 Crash 

Frequency Modeling) that few of the continuous variables used in the model development 

process. As can be noted, the complexity of the models requires visual realization of the 

relationship of the crash frequency with varying input parameters. This chapter deals with the 

change in the frequency of crashes as the value of any particular continuous variable changes. 

Determining how important a parameter is to a function is different from understanding how the 

function changes with variation in the parameter. Sensitivity analysis is useful in determining the 

significance of a variable to a function. The absolute sensitivity Si of a function f(x1,…,xn) 

towards a variable xi is given by Equation 8-1 (Smith et al., 2008):  

 

Equation 8-1 

i
i x
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∂
∂
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The absolute sensitivity is calculated at a normal operating point, which in the present study is 

the point when all other variables assume mean value. The absolute sensitivity value indicates 

which variable has the maximum effect on the result, for a constant change in the parameters. 

However, the relative sensitivity value (Equation 8-2) indicates which variables would have the 
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most impact on the variation of the output (Saltelli, et al., 2000). In this research the relativity 

sensitivity has been implemented.  

 

Equation 8-2 
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The mathematical formulation for Equation 8-2 requires derivatives to be evaluated. Hence, in 

the present case the relative sensitivity towards continuous input variables can only be assessed. 

The binary variables which do not satisfy the limit conditions cannot be assessed in the study. 

 

8.1.2 Angle Crashes 

The segment model for angle / turning movement crashes, given by Equation 7-1, has surface 

width (V0) as the only continuous variable entering the model. The plots in Figure 8-1 show that 

as the surface width increases the frequency of crashes decrease for the morning and the 

afternoon peaks. The frequency increases during the Friday and Saturday night peak conditions. 

The results are also fixed for mean and/or modal values of the other input variables. In Figure 

8-2 it can be observed that during off peak periods of the day the crash count decreases or 

increases with surface width depending on day light or no-day light condition respectively. The 

graphs were plotted using MathcadTM (version 14). In Figure 8-1 and Figure 8-2 frequency of 

crashes is on the y-axis while surface width (V0) is plotted on the x-axis. 
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Figure 8-1 Crash Frequency versus Surface Width at different peak periods 

 

Figure 8-2 Crash Frequency versus Surface Width for Off Peak periods 
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As mentioned earlier the segment model has only surface width (V0) as the continuous variable. 

The model’s relative sensitivity towards the parameter evaluates to -0.001.  

 

In the intersection model for angle / turning movement crashes given by Equation 7-2, it can be 

noted that three continuous variables enter the model namely: maximum posted speed limit (V2), 

sectional ADT (V3), and friction coefficient (V5). Plot (a) in Figure 8-3 changing ADT (y-axis) 

and posted speed limit (x-axis) shows the crash count with changing ADT (y-axis) and posted 

speed limit (x-axis) while plot (b) illustrates the crash frequency with changing ADT (y-axis) and 

friction coefficient (x-axis). The results are for morning peak hours. The plots for afternoon peak 

hours and the off-peak hours are similar.  

 

 

Figure 8-3 Crash Frequency contour plot with VIBGYOR increasing color patterns 

 

The crash count is given by the contours which have been filed with VIBGYOR color patterns. 

This means that as we move from violet to red the crash frequency increases. For example in plot 

ADT_Speed ADT_Friction
(a) (b) 
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(a) for any given posted speed limit, crash occurrences increase with increase of ADT. It can also 

be observed that the increase in crash frequency is greater at lower speed limit as the ADT goes 

up. This could be attributed to speed variation under the specific traffic conditions. For the 

intersection model ADT is the most important variable contributing to the crash count variance. 

The relative sensitivity is 0.29 as compared to 0.133 for maximum posted speed limit and 0.037 

for friction coefficient. In case of the access model also, ADT has been found to be the most 

important continuous variable with a relative sensitivity value of 0.141 as compared to 0.048 for 

skid resistance.  

 

8.1.3 Head-on Crashes 

The segment model for head-on crashes is given by Equation 7-4 where the average truck factor 

(V4) enters the model. The relative sensitivity for the average truck factor was also higher than 

the friction coefficient.  

  

The intersection model for this type of crash, given by Equation 7-5 reveals interesting crash 

frequency patterns indicating differences between morning/ afternoon peaks and Friday/ 

Saturday night peaks. Figure 8-4 illustrates the crash count contour as surface width changes 

with shoulder width or skid resistance during the morning peak hours and the Friday/ Saturday 

night peak conditions. The afternoon peak patterns are similar to morning peak. Plots in Figure 

8-5 reflect the migration of crash count prone conditions of average truck factor and friction 

coefficient. In Figure 8-4 the surface width is always on the x-axis. 
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Figure 8-4 Crash Count patterns for Morning peak (top) and Friday/Saturday night peak (bottom) 

 

Figure 8-5 Crash Count patterns for Morning peak (left) and Friday/Saturday night peak (right) 

  

surface_shoulder surface_skid

surface_shoulder surface_skid

truck_skid truck_skid
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In Figure 8-5 the average truck factor is on the y-axis while the skid resistance is on the x-axis. 

In Figure 8-4 and Figure 8-5 it is critical to observe how the ‘red; area changes. The shift is 

indicative of crash risk migration in time for different peak hours. Figure 8-6 and Figure 8-7 

show surface plots indicating the crash frequency variation with change in ADT and shoulder 

width or maximum posted speed limit respectively. For both the figures the plot on the left is for 

morning peak while the plot on the right is for Friday/Saturday night peak conditions. In Figure 

8-6 and Figure 8-7 the hidden axis is for the ADT. The vertical axis going away from the reader 

is the crash frequency.  
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Figure 8-6 Crash Frequency variation with ADT and Shoulder width 

 

 

Figure 8-7 Crash Frequency variation with ADT and Maximum Posted Speed limit  

   

The interpretation of the colors of the surface plots is the same as that of the contour plots. 

 

shoulder_ADT shoulder_ADT

speed_ADT speed_ADT
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8.1.4 Rear-end Crashes  

The average sectional ADT (V3) is common among all the three crash frequency models given 

by Equation 7-7 through Equation 7-9. Figure 8-8 and Figure 8-9 show the plots demonstrating 

how the frequency of crashes changes during the weekday morning peak hour and the weekday 

afternoon peak hour respectively with varying sectional ADT. In Figure 8-8 and Figure 8-9 the 

y-axis represents crash count and the x-axis represents the sectional ADT (V3).  

 

 

Figure 8-8 Crash Frequency versus ADT during morning peak hours 
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 Figure 8-9 Crash Frequency versus ADT during afternoon peak hours  

 

It is observed that at signalized intersections, the increase of ADT boosts the crash count during 

the morning peak hour and slows down the occurrence of crashes during the afternoon peak 

hour. The urgency to reach the work place during the morning peak hours could compel the 

drivers to be more aggressive on the roadways and hence, at the intersections, where cross traffic 

flow is also significantly high, there is an observed increase of crash counts. A more fascinating 

graph is observed for the segment models. During the morning peak hours there is an observed 

monotonic increase in crash frequency at ADT ≥ 55,299 and similar trend during the afternoon 
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peak hours at ADT ≥ 51,893. It can be observed that for lower ADT values, the crash count trend 

is fluctuating (see Figure 8-8 and Figure 8-9 – segment model plots).  

 

For average conditions the frequency of crashes decreases with increase in the maximum posted 

speed limit for access related rear-end crashes. It was also interesting to observe that crash counts 

reach a maximum when the surface width is approximately 30 ft . Lower or higher values of 

surface width results in a decrease of crashes for access related rear-end crashes (Figure 8-10). 

As the skid resistance increases the crashes are found to be decreasing during the morning peak 

hours at signalized intersections while a reverse trend is observed during the afternoon peak 

hours during the weekdays (Figure 8-11). The y-axis represents crash frequency and the x-axis 

represents surface width (V0) in Figure 8-10 and skid resistance (V5) in Figure 8-11.  

 

 

Figure 8-10 Crash Frequency versus Surface width  
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Figure 8-11 Crash Frequency versus Friction coefficient 

 

Figure 8-12 shows the contour plots for varying crash occurrences with change in ADT and 

surface width or maximum posted speed limit during morning peak hours. Both the plots suggest 

that the crash count increase with increase of ADT. However, the crash occurrences are more 

with lower speeds. This is consistent with the results shown in Figure 8-7 and Figure 8-3 where 

the instances of head-on as well as angle/ turning movement crashes increase with lower speed 

limits during the morning peak hours. In Figure 8-12 the sectional ADT is the y-axis for both the 

plots.  
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Figure 8-12 Crash Occurrence variation with ADT and Surface width (left) or Speed limit (right)  

 

The relative sensitivity of the crash frequency towards ADT is -0.246 during the morning peak 

hours and is 0.246 during the afternoon peak hours, for the mid-block segment crashes. The 

difference in sign reflects the difference in the directionality of the variation in crash count. 

However, this value cannot be used further for comparative purpose due to the absence of other 

continuous variables in the model.  

 

In the intersection related rear-end crash frequency model the relative sensitivity of the output 

towards ADT is higher (0.002) than that to the skid resistance (0.0009). This implies that ADT 

bring greater variation to the crash frequency than the friction coefficient of the pavement. In the 

access related rear-end crash count model four continuous variables enter the model. Among 

them, ADT was found to have the maximum effect on the variation of crashes (0.98). Maximum 

posted speed limit (0.009), surface width (0.007) and skid resistance (0.001) also effect the 

variation in crash count.  
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CHAPTER 9. CONCLUSIONS  

9.1 Summary 

Understanding the contributing factors for crash occurrence and injury severity resulting from a 

crash is essential for transportation safety analyses. Lack of proper understanding of the 

significant parameters can lead to inconclusive results thus rendering any research work 

impractical for implementation. Many researchers may argue that most of the contributing 

factors are already known; however, the dynamic nature of the transportation system has always 

posed a challenge to fully understand the behavior of the contributory factors. The existing body 

of knowledge consists of empirical, statistical, numerical and machine learning studies to 

augment our understanding of the safety situation. As stated in CHAPTER 1, the objective of the 

study is not only to enhance our perception of the safety of roadways but also to incorporate 

innovative applied methodologies in safety analysis. A key aspect of this research has been the 

application of machine learning algorithms in developing models for crash occurrence as well as 

injury severity classification. Missing data elements, under-reporting of crashes, faulty data 

entry, and non-uniform practice of law enforcement plague the transportation database. Hence, a 

thorough understanding of the transportation system is required, specifically from a safety point 

of view.   

 

Understanding of the difference in the crash pattern of segments and intersections is elemental to 

the corridor safety approach, especially as it relates to injury severity.  If one observes crashes 

only at the physical area of intersections; crashes would involve higher proportion of angle 
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and/or left turn crashes which tend to be more severe. However, as the definition of the 

intersection is changed to include some area around it (i.e., the influence area for an intersection 

is defined); rear-end and other groups of crashes would be included in the sample and the 

severity patterns may be altered. Research presented in CHAPTER 3 concludes that the set of 

significant factors change as the influence distance changes. Hence, the use of a fixed influence 

distance is ruled out. Another critical finding was the inter-dependency of the crash location with 

injury severity. In other words if injury severity patterns had to be studied it will be crucial that 

the corridor approach be used for the research objectives at hand.  

 

It is critical to distinguish among segment-related, signalized intersection-related and un-

signalized intersection-related crashes. State of Florida has a typical intersection influence radius 

of 250 ft. irrespective of the physical size, ADT of the intersecting roadways, number of lanes 

and demographics. In addition to this impractical influence radius, Florida has a 50 ft default 

intersection size. Since not all intersections are of the same size, no matter how good the officer 

is at guessing the location indicated in the crash report, it is a rough approximation. If the “site 

location” is used to determine the location of a crash, the only access related crashes that could 

be identified are those with site location value of ‘driveway access’. This highlights the futility in 

using ‘site location’ to assign crashes. A closer study of crash reports revealed that traffic control 

in combination with the site location did a superior job in identifying the roadway element to be 

assigned to correctly. Hence the method of assigning a crash based on crash characteristics. 

CHAPTER 4 lays down the comprehensive rules used to assign crashes to appropriate roadway 

elements based on the ‘site location’, ‘traffic control’ and node information.  
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Though the researcher focused on a corridor approach for the study, the FDOT does not have an 

exact definition of a corridor. Hence it was critical that the analysis begins with a definition of a 

corridor. The roadway design of arterials which is essentially of three types: 1) Urban; 2) Sub-

Urban and 3) Rural; was chosen as the defining parameter for creating homogenous sections. 

Corridors of similar lengths have their heterogeneity minimized. Hence, clustering was 

performed based on Partitioning around Medoids algorithm. Corridors were clustered in four 

groups and the range of corridors in each cluster is given in Table 5-1.  

 

A data mining approach was adopted for injury severity analysis, especially tree algorithms 

which can generate classification rules. Classification is more appropriate for injury severity 

analysis as the response variable is binary or ordinal (for more than two categories of severity). 

The reason for choosing a data mining approach was its versatility to build a trained model and 

then validating it (supervised learning). However, recent research in theoretical statistics indicate 

that CART algorithm is biased towards selecting variables that are continuous in nature or have 

large number of categories. Hence, in the present work the researcher used the conditional 

inference tree as the classification algorithm (see CHAPTER 6). The input parameter’s 

association with the target variable decides the importance of the parameter where as the split 

can be done by the regular split methods applied in CART. Failure to use seat belts, higher 

posted speed limits, alcohol / drug use, slow moving vehicles, higher skid resistance are some of 

the factors that contributed to increased severity of injuries sustained during crashes.  
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Essential difference between the crash occurrence phenomenon and the injury severity levels is 

the response type. Crash occurrence is a continuous integer response while the severity is an 

ordinal target. Since the crash occurrence and injury severity are fundamentally different 

phenomena it is not practical to have one model governing them. However, in CHAPTER 7 the 

researcher suggests independent approaches for building both the injury severity and crash 

frequency models under the broader umbrella of the heuristic GP, using the concepts of 

evolutionary biology like crossover and mutation. The process of model evolution takes places, 

through generations, with decreasing mean error as the objective function for crash count 

modeling and increasing hit rate as the objective function for injury severity classification. On-

street parking at higher speed corridors increases the likelihood of injuries resulting from 

crashes. Higher shoulder width reduces injury severity where as restrictive median openings, 

lower ADT (indication of higher vehicle speeds), sharper curves and high truck percentage 

increase injury severity on the highways. The plots shown in CHAPTER 8 enhance our 

perception of the trends of crash counts, especially when the models are non-linear. 

 

9.2 Recommendations 

The pertinent question that a reader may ask is why is there a need of advanced machine learning 

algorithms, sophisticated data mining techniques, and statistical models to investigate the 

contributing factors.  The need arises due to the fact that our roadway systems are dynamic. The 

environment around them changes, the driver behavior ranges from cautious to aggressive. The 

complexity of the equations which govern the crash occurrence phenomena and the classification 
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rules for injury severity is evidence enough to prove intuition wrong. Crash statistics mentioned 

in CHAPTER 1 reveal the grim safety situation. Even though the crash rates, fatality rates may 

have gone down significantly over the years the number of fatalities and incapacitating crashes 

are high. The only way to reduce the number of fatalities is through counter measures. Effective 

countermeasures can only be developed if our understanding of the causative factors is adequate. 

The 3 E’s (engineering, education and enforcement) are the three basic strategies that have to be 

implemented effectively to observe any significant change in the safety situation of highways.  

 

 

Figure 9-1  Bottom – Up approach for 3 E’s implementation  

 

3 E’s

Engineering Education Enforcement 

Median redesign; 

Shoulder widening; 

Alcohol/ drug abuse awareness; 

Policy changes; 

Stringent rules; 
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The path from problem identification to solution implementation goes through understanding of 

contributing factors phase. One of the primary objectives of this extensive study was to identify 

significant factors and their trends in understanding injury severities. This is essential to 

recommend changes in design and policy for better planning of the roadway network. The 

following recommendations are based on some of the important findings of the present work. 

The evaluation of the recommendations could be the scope of future research work.  

 

1. Crashes related to alcohol/ drug use by drivers are found to have higher injury severity 

when young children (up to 3 years old) and/or older people (more than 55 years) are 

present in the vehicle (see section 6.4.2.3). The physical vulnerability of people 

belonging to these age groups puts them at a higher risk of sustaining severe injuries in 

case of a crash. This is similar to reckless endangerment of another person. A law in 

California prohibits adults from smoking when minors are inside the vehicle. DUI is as 

much a public health issue as it is an unsafe driving problem. Hence, a harsher 

punishment could be imposed on drivers charged with DUI with passengers, especially 

those belonging to the above mentioned age groups, on board.  

 

2. Presence of restrictive medians (gap between openings is 0.5 mile for posted speed limits 

greater than 45 mph and 0.25 mile otherwise) has been observed to be associated with 

higher injury severity in angle/ turning movement and sideswipe crashes (see sections 

6.4.2.2, 6.4.2.6 and 7.3.1.3). To alleviate the situation operation strategies like increased 

time for left turn phase on nearby signalized intersections. A case by case analysis may 
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be carried out on these problematic roadway sections to observe the effects without 

adversely affecting the level of service for the intersections. Future roadway sections 

could use alternate design strategies in terms of using the more frequent directional 

medians. The directional medians have been observed to be better both in terms of safety 

and operations (Zhou et al., 2001). 

 

3. Less than 45 mph posted speed limit together with a higher K-factor has been observed 

have higher proportion of severe angle/ turning movement and rear-end crashes on the 

urban arterials. (refer to sections 6.4.2.2 and 6.4.2.3) Design considerations may not 

permit the increase of speed limits. Authorities could make use of Advanced Traffic 

Information Systems (AITS) to educate drivers in planning the trips so as to avoid peak 

hour congestion. Proper dissemination of traffic information to the drivers could spread 

the congestion more uniformly through more number of hours leading to lower k-factor.  

 

4. It was observed that higher friction coefficient is associated with severe injuries rear-end 

crashes (see section 6.4.2.3) and have also been associated with an increase in frequency 

of crashes (refer to sections 7.3.1.2, 7.3.1.3 and 7.3.1.4). Higher skid resistance means 

shorter braking distance. The drivers may over compensate for it by driving faster. 

Coming to a sudden stop due to better pavement friction and advanced braking system on 

the vehicles more often leads to internal movements inside the vehicle thus causing 

secondary severe injuries. Moreover, injuries sustained during crashes have been found to 

be more severe due to non-use of safety belts or other safety equipments. Mitigation of 
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impact could be a solution which may be from proper use of seatbelts and other 

equipment may lead to even safer braking. Even though authorities are presently doing 

their best to spread awareness on seatbelt use law, a more directed campaign to educate 

the drivers is required.  

 

5. Slow and lighter vehicles like cycle, mopeds etc. always are riskier to drive on urban 

arterials as they compete for space on the roads without providing much physical 

protection to the driver (see sections 6.4.2.3 and 6.4.2.6). Wider cycling lanes could be 

tried as a potential countermeasure with proper before-after study to assess the safety 

improvement. Urban traffic control systems designed to recognize cyclists and give them 

priority. Diversion of traffic from roadways frequently used by higher number of cyclists 

could be implemented. Road signs like advanced stop signs for cyclists and the use of 

shared space concepts in future urban design could be tested. Strategies to encourage safe 

cycling on the roadways could be an impetus for green transportation. 

 

6. The results reflected that with the increase of “shoulder + sidewalk” width, the severity of 

injury sustained decreased (refer to sections 7.3.1.2 and 7.3.1.3). This is particularly 

useful in the context of urban arterials as a lot of sections have very little inner and/or 

outer shoulder width. The presence of side walk gives the adequate cushion for recovery 

in case of a lane-departure crash. Wider sidewalks can not only provide the cushion but 

also allow more space for the urban pedestrian to avoid potential vehicle-pedestrian crash 

in which severe injuries are often sustained. Hence provision for adequate sidewalks in 
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the future roadway design should be incorporated and the right-of-way acquisition could 

be planned accordingly. 

 

7. Higher truck factor on the roadways have been observed to be associated with increased 

severity of head-on injuries (see section 7.3.1.3). Strategies for restrictions on lane use 

could be tested specifically on the corridors where truck related crashes are higher. 
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