You are here

PRESSURE DROP AND ENDWALL HEAT TRANSFER EFFECTS OF POROUS TURBULATORS IN A RECTANGULAR CHANNEL

Download pdf | Full Screen View

Date Issued:
2009
Abstract/Description:
This study examines the local and averaged endwall heat transfer effects of a staggered array of porous pin fins within a rectangular channel. The porous pin fins were made from aluminum and had a pore density of 10 pores per inch (PPI). The pressure drop through the channel was also determined for several flow rates and presented in terms of the friction factor. Local heat transfer coefficients on the endwall were measured using Thermochromic Liquid Crystal (TLC) sheets recorded with a charge-coupled device (CCD) camera. Static and total pressure measurements were taken at the entrance and exit of the test section to determine the overall pressure drop through the channel and explain the heat transfer trends through the channel. Results are presented for Reynolds numbers between 25000 and 130000 and a blockage ratio (blocked channel area divided by open channel area) of 50%. All results were compared to the corresponding results obtained using solid pins. All experiments were carried out in a 150 mm by 500 mm channel with an X/D of 1.72, a Y/D of 2.0, and a Z/D of 1.72 for the porous pins. It was found that for the range of Reynold's numbers tested in this study, the porous pin array consistently resulted in a larger friction factor, and therefore greater losses than a geometrically similar array of solid pins. The friction factors for the solid pin array were between 9.5 and 10.5, similar to the results found in the literature. For the porous pins, however, the friction factors were significantly increased as the Reynold's number increased, reaching as high as 15.3 at the highest Reynold's number tested. The heat transfer enhancement for the porous pins was found to be between 150 and 170% while the solid pins resulted in a heat transfer enhancement between 190 and 230%.
Title: PRESSURE DROP AND ENDWALL HEAT TRANSFER EFFECTS OF POROUS TURBULATORS IN A RECTANGULAR CHANNEL.
34 views
15 downloads
Name(s): Pent, Jared, Author
Kapat, Jay, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2009
Publisher: University of Central Florida
Language(s): English
Abstract/Description: This study examines the local and averaged endwall heat transfer effects of a staggered array of porous pin fins within a rectangular channel. The porous pin fins were made from aluminum and had a pore density of 10 pores per inch (PPI). The pressure drop through the channel was also determined for several flow rates and presented in terms of the friction factor. Local heat transfer coefficients on the endwall were measured using Thermochromic Liquid Crystal (TLC) sheets recorded with a charge-coupled device (CCD) camera. Static and total pressure measurements were taken at the entrance and exit of the test section to determine the overall pressure drop through the channel and explain the heat transfer trends through the channel. Results are presented for Reynolds numbers between 25000 and 130000 and a blockage ratio (blocked channel area divided by open channel area) of 50%. All results were compared to the corresponding results obtained using solid pins. All experiments were carried out in a 150 mm by 500 mm channel with an X/D of 1.72, a Y/D of 2.0, and a Z/D of 1.72 for the porous pins. It was found that for the range of Reynold's numbers tested in this study, the porous pin array consistently resulted in a larger friction factor, and therefore greater losses than a geometrically similar array of solid pins. The friction factors for the solid pin array were between 9.5 and 10.5, similar to the results found in the literature. For the porous pins, however, the friction factors were significantly increased as the Reynold's number increased, reaching as high as 15.3 at the highest Reynold's number tested. The heat transfer enhancement for the porous pins was found to be between 150 and 170% while the solid pins resulted in a heat transfer enhancement between 190 and 230%.
Identifier: CFE0002819 (IID), ucf:48085 (fedora)
Note(s): 2009-08-01
M.S.M.E.
Engineering and Computer Science, Department of Mechanical Materials and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): heat transfer
pin fins
porous media
turbulators
pressure drop
friction factor
airfoil cooling
endwall effects
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002819
Restrictions on Access: campus 2014-07-01
Host Institution: UCF

In Collections