You are here

AUTOMATIC GRAPHICS AND GAME CONTENT GENERATION THROUGH EVOLUTIONARY COMPUTATION

Download pdf | Full Screen View

Date Issued:
2009
Abstract/Description:
Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation introduces three novel technologies that together realize this ambition. (1) The first, NEAT Particles, is an evolutionary method to enable users to quickly and easily create complex particle effects through a simple interactive evolutionary computation (IEC) interface. That way, particle effects become an evolvable class of content, which is exploited in the remainder of the dissertation. In particular, (2) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players. Through cgNEAT, the game platform on its own can generate novel content that is designed to satisfy its players. Finally, (3) the Galactic Arms Race (GAR) multiplayer online video game is constructed to demonstrate these techniques working on a real online gaming platform. In GAR, which was made available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. The resulting study shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially significantly reducing the cost of content creation and considerably increasing entertainment value with a constant stream of evolving content.
Title: AUTOMATIC GRAPHICS AND GAME CONTENT GENERATION THROUGH EVOLUTIONARY COMPUTATION.
35 views
14 downloads
Name(s): Hastings, Erin, Author
Stanley, Kenneth, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2009
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Simulation and game content includes the levels, models, textures, items, and other objects encountered and possessed by players during the game. In most modern video games and simulation software, the set of content shipped with the product is static and unchanging, or at best, randomized within a narrow set of parameters. However, ideally, if game content could be constantly and automatically renewed, players would remain engaged longer in the evolving stream of content. This dissertation introduces three novel technologies that together realize this ambition. (1) The first, NEAT Particles, is an evolutionary method to enable users to quickly and easily create complex particle effects through a simple interactive evolutionary computation (IEC) interface. That way, particle effects become an evolvable class of content, which is exploited in the remainder of the dissertation. In particular, (2) a new algorithm called content-generating NeuroEvolution of Augmenting Topologies (cgNEAT) is introduced that automatically generates graphical and game content while the game is played, based on the past preferences of the players. Through cgNEAT, the game platform on its own can generate novel content that is designed to satisfy its players. Finally, (3) the Galactic Arms Race (GAR) multiplayer online video game is constructed to demonstrate these techniques working on a real online gaming platform. In GAR, which was made available to the public and playable online, players pilot space ships and fight enemies to acquire unique particle system weapons that are automatically evolved by the cgNEAT algorithm. The resulting study shows that cgNEAT indeed enables players to discover a wide variety of appealing content that is not only novel, but also based on and extended from previous content that they preferred in the past. The implication is that with cgNEAT it is now possible to create applications that generate their own content to satisfy users, potentially significantly reducing the cost of content creation and considerably increasing entertainment value with a constant stream of evolving content.
Identifier: CFE0002814 (IID), ucf:48143 (fedora)
Note(s): 2009-08-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): cgNEAT
Galactic Arms Race
GAR
particle systems
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002814
Restrictions on Access: public
Host Institution: UCF

In Collections