You are here

ON THE APPLICATION OF LOCALITY TO NETWORK INTRUSION DETECTION: WORKING-SET ANALYSIS OF REAL AND SYNTHETIC NETWORK SERVER TRAFFIC

Download pdf | Full Screen View

Date Issued:
2009
Abstract/Description:
Keeping computer networks safe from attack requires ever-increasing vigilance. Our work on applying locality to network intrusion detection is presented in this dissertation. Network servers that allow connections from both the internal network and the Internet are vulnerable to attack from all sides. Analysis of the behavior of incoming connections for properties of locality can be used to create a normal profile for such network servers. Intrusions can then be detected due to their abnormal behavior. Data was collected from a typical network server both under normal conditions and under specific attacks. Experiments show that connections to the server do in fact exhibit locality, and attacks on the server can be detected through their violation of locality. Key to the detection of locality is a data structure called a working-set, which is a kind of cache of certain data related to network connections. Under real network conditions, we have demonstrated that the working-set behaves in a manner consistent with locality. Determining the reasons for this behavior is our next goal. A model that generates synthetic traffic based on actual network traffic allows us to study basic traffic characteristics. Simulation of working-set processing of the synthetic traffic shows that it behaves much like actual traffic. Attacks inserted into a replay of the synthetic traffic produce working-set responses similar to those produced in actual traffic. In the future, our model can be used to further the development of intrusion detection strategies.
Title: ON THE APPLICATION OF LOCALITY TO NETWORK INTRUSION DETECTION: WORKING-SET ANALYSIS OF REAL AND SYNTHETIC NETWORK SERVER TRAFFIC.
46 views
27 downloads
Name(s): Lee, Robert, Author
Lang, Sheau-Dong, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2009
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Keeping computer networks safe from attack requires ever-increasing vigilance. Our work on applying locality to network intrusion detection is presented in this dissertation. Network servers that allow connections from both the internal network and the Internet are vulnerable to attack from all sides. Analysis of the behavior of incoming connections for properties of locality can be used to create a normal profile for such network servers. Intrusions can then be detected due to their abnormal behavior. Data was collected from a typical network server both under normal conditions and under specific attacks. Experiments show that connections to the server do in fact exhibit locality, and attacks on the server can be detected through their violation of locality. Key to the detection of locality is a data structure called a working-set, which is a kind of cache of certain data related to network connections. Under real network conditions, we have demonstrated that the working-set behaves in a manner consistent with locality. Determining the reasons for this behavior is our next goal. A model that generates synthetic traffic based on actual network traffic allows us to study basic traffic characteristics. Simulation of working-set processing of the synthetic traffic shows that it behaves much like actual traffic. Attacks inserted into a replay of the synthetic traffic produce working-set responses similar to those produced in actual traffic. In the future, our model can be used to further the development of intrusion detection strategies.
Identifier: CFE0002718 (IID), ucf:48171 (fedora)
Note(s): 2009-08-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): network security
intrusion detection
locality
working sets
network servers
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0002718
Restrictions on Access: public
Host Institution: UCF

In Collections