You are here
AN IMPROVED HURRICANE WIND VECTOR RETRIEVAL ALGORITHM USING SEAWINDS SCATTEROMETER
- Date Issued:
- 2009
- Abstract/Description:
- Over the last three decades, microwave remote sensing has played a significant role in ocean surface wind measurement, and several scatterometer missions have flown in space since early 1990's. Although they have been extremely successful for measuring ocean surface winds with high accuracy for the vast majority of marine weather conditions, unfortunately, the conventional scatterometer cannot measure extreme winds condition such as hurricane. The SeaWinds scatterometer, onboard the QuikSCAT satellite is NASA's only operating scatterometer at present. Like its predecessors, it measures global ocean vector winds; however, for a number of reasons, the quality of the measurements in hurricanes are significantly degraded. The most pressing issues are associated with the presence of precipitation and Ku-band saturation effects, especially in extreme wind speed regime such as tropical cyclones (hurricanes and typhoons). Under this dissertation, an improved hurricane ocean vector wind retrieval approach, named as Q-Winds, was developed using existing SeaWinds scatterometer data. This unique data processing algorithm uses combined SeaWinds active and passive measurements to extend the use of SeaWinds for tropical cyclones up to approximately 50 m/s (Hurricane Category-3). Results show that Q-Winds wind speeds are consistently superior to the standard SeaWinds Project Level 2B wind speeds for hurricane wind speed measurement, and also Q-Winds provides more reliable rain flagging algorithm for quality assurance purposes. By comparing to H*Wind, Q-Winds achieves ~9% of error, while L2B-12.5km exhibits wind speed saturation at ~30 m/s with error of ~31% for high wind speed (> 40 m/s).
Title: | AN IMPROVED HURRICANE WIND VECTOR RETRIEVAL ALGORITHM USING SEAWINDS SCATTEROMETER. |
29 views
14 downloads |
---|---|---|
Name(s): |
Laupattarakasem, Peth, Author Jones, Linwood, Committee Chair University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2009 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Over the last three decades, microwave remote sensing has played a significant role in ocean surface wind measurement, and several scatterometer missions have flown in space since early 1990's. Although they have been extremely successful for measuring ocean surface winds with high accuracy for the vast majority of marine weather conditions, unfortunately, the conventional scatterometer cannot measure extreme winds condition such as hurricane. The SeaWinds scatterometer, onboard the QuikSCAT satellite is NASA's only operating scatterometer at present. Like its predecessors, it measures global ocean vector winds; however, for a number of reasons, the quality of the measurements in hurricanes are significantly degraded. The most pressing issues are associated with the presence of precipitation and Ku-band saturation effects, especially in extreme wind speed regime such as tropical cyclones (hurricanes and typhoons). Under this dissertation, an improved hurricane ocean vector wind retrieval approach, named as Q-Winds, was developed using existing SeaWinds scatterometer data. This unique data processing algorithm uses combined SeaWinds active and passive measurements to extend the use of SeaWinds for tropical cyclones up to approximately 50 m/s (Hurricane Category-3). Results show that Q-Winds wind speeds are consistently superior to the standard SeaWinds Project Level 2B wind speeds for hurricane wind speed measurement, and also Q-Winds provides more reliable rain flagging algorithm for quality assurance purposes. By comparing to H*Wind, Q-Winds achieves ~9% of error, while L2B-12.5km exhibits wind speed saturation at ~30 m/s with error of ~31% for high wind speed (> 40 m/s). | |
Identifier: | CFE0002654 (IID), ucf:48242 (fedora) | |
Note(s): |
2009-05-01 Ph.D. Engineering and Computer Science, School of Electrical Engineering and Computer Science Doctorate This record was generated from author submitted information. |
|
Subject(s): |
Remote sensing wind vector retrieval hurricane QuikSCAT SeaWinds |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0002654 | |
Restrictions on Access: | public | |
Host Institution: | UCF |