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ABSTRACT

Since their discovery in the early 1950’s, frames have emerged as an important tool
in areas such as signal processing, image processing, data compression and sampling
theory, just to name a few. Our purpose of this dissertation is to investigate dual
frames and the ability to find dual frames which are optimal when coping with the
problem of erasures in data transmission. In addition, we study a special class of
frames which exhibit algebraic structure, discrete Gabor frames. Much work has
been done in the study of discrete Gabor frames in R", but very little is known about
the (%(Z) case or the £2(Z?) case. We establish some basic Gabor frame theory for

(*(Z) and then generalize to the (2(Z<) case.
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CHAPTER 1
INTRODUCTION

The concept of an orthonormal basis is fundamental in the study of inner product
spaces, and Hilbert spaces in particular. Results for orthonormal bases make it easier
to study such topics as dimension, projections, separability of Hilbert spaces, and
countless others. However, their most fundamental use is in representing any vector
as a linear combination of the orthnormal basis vectors, and the ease with which the
coefficients of that linear combination can be found.

For example, if {e;}! ; is an orthonormal basis for a Hilbert space, H, and z is
any vector of the space with > | ¢;e; its linear combination, then by taking the inner

product with e; we see that

3

T = Ci€;
=1
n
(x,e5) = < ciel-,ej>
i=1
n
<$76J> = Ci<617€]>
=1
<5E7 6j> =G



Therefore, it follows that for any x in H

n

xr = Z(w,ei)ei (1.1)

=1

which gives a nice (and unique) representation for the vector z in that orthonormal
basis.
As a consequence of Equation 1.1, by taking the inner product with x, we have a

very useful identity known as the Parseval identity

l||* = Z [z, )] (1.2)

which holds for all x in H.

So then, given these advantages, what are some of the disadvantages of using
orthonormal bases?

Firstly, they are sensitive to data loss. For example, in the context of signal trans-
mission, a signal can be thought of as a vector, represented by a linear combination in
a particular orthonormal basis. The coefficients of the linear combination are the data
that is transmitted to a receiver. If even one of the coefficients is lost in transmission,
the signal cannot be reconstructed again.

Another shortcoming of orthonormal bases is evident when we wish to choose basis
vectors that satisfy some other conditions, such as a group structure, and it may be
impossible to find an orthonormal basis which satisfies the additional conditions.

One solution to these issues is the notion of a frame.

In 1952, while working on problems in nonharmonic Fourier series, Duffin and

Schaeffer introduced frames for a Hilbert space, although their work was not con-



tinued until the 1980s, when Morlet, Grossmann, and others brought about the
“wavelet era”, and with it a renewed interest in overcomplete systems.

Frames generalize the concept of a basis by sacrificing the uniqueness of a vector’s
orthonormal basis representation, which is often unnecessary in applications, in ex-
change for redundancy which makes the frame more robust for applications such as
data transmission.

Moreover, a special subset of frames known as Parseval frames, continue to satisfy
Equations 1.1 and 1.2, offering even more of the benefits of orthonormal bases, such
as the ability to easily compute the coefficients of a representation using the inner
product.

Because of these advantages, the last few years have seen a tremendous growth
in the research area of frames. They appear in the fields of signal processing, image
processing, quantum mechanics, harmonic analysis, and many others. They are also
interesting from a purely mathematical standpoint, which will be our primary focus.

The rest of the chapters are laid out as follows. Chapter 2 begins with a brief
introduction to frames, including some of the basic results for general frames. In ad-
dition, the idea of using dual pairs of frames for the trace of an operator is introduced
in Section 2.7.

Chapter 3 continues the overview of frames by focusing on a class of frames which
exhibit algebraic structure, in particular group structure. This will help lay the
foundation for some of the later work in finding optimal dual frames for group repre-
sentation frames, as well as for studying the discrete Gabor frames.

The main results of this work are presented in Chapters 4 and 5.

Chapter 4 begins with a simple introduction to using frames for signal transmis-



sion. As mentioned above, frames have proven to be useful in such applications, since
their redundant nature makes them more robust when dealing with erasures, a loss
of some of the transmitted data. The error of such a loss, that is, a measure of
the difference between the reconstructed signal and the original signal, can be made
smaller by choosing an appropriate frame to use for encoding the signal. Finding
frames which are “optimal” in this sense has been studied, see for example [23]. This
method, however, will naturally add some constraints on which frames can be used
for coding.

We take a slightly different approach. Rather than minimizing the error at the
outset, consider coding a vector using a frame already chosen, and then, if there
are erasures, reconstructing the signal using a dual frame which minimizes the error.
Finding such an optimal dual frame for a given frame is the problem which is studied
in Chapter 4.

We first prove the existence of optimal dual frames for any number of erasures.
Then we go on to show that for many important classes of frames, the canonical dual
frame is an optimal dual frame, and, moreover, it is the unique optimal dual frame.
We show this result for both uniform tight frames and group representation frames,
and then go on to generalize this result to any frame where ||S™ ;|| -||z;]| is a constant
for all i.

We then give some examples, one of which shows that it is possible for a frame to
have a unique optimal dual frame which is not the canonical dual. Another example
shows that a frame can have infinitely many optimal dual frames for one erasure.

In Chapter 5, we change gears and begin studying another class of structured

frame, the Gabor (or Weyl-Heisenberg) frame. Gabor frames are the result of taking



a base function, known as a Gabor atom, and applying time translations and frequency
modulations to generate a sequence of functions which form a frame.

Much of the work in this area has involved the infinite-dimensional function space
L*(RY) and the finite-dimensional signal space R? (or C¢). However, very little is
known about the infinite-dimensional discrete signal space £2(Z%), especially when
d > 1. Studying the fundamental aspects of discrete Gabor frames in £%(Z%) is the
focus of Chapter 5.

We begin by reviewing some of the definitions and properties for frames, with
special attention to those things which are different in the infinite-dimensional setting.
We define the Gabor family, and give some basic properties of Gabor frames.

Then we show some results for the ¢?(Z) case which are analogous to a few fun-
damental theorems about Gabor frames which are well known in L?*(R?). These
include the density theorems for frames and super-frames, the characterizations of
dual frame pairs and tight frames, and the characterization of orthogonal (strongly
disjoint) frames. We also give the existence theorem for the tight dual frame of the
Gabor type in the £%(Z%) case.

Next, the characterizations and density theorems are generalized to £2(Z¢). There
are some technical difficulties in doing this because of the complexity involved with the
higher dimension lattices in Z?. In particular, the density theorem for Gabor super-
frames requires the generalization of an existence theorem for common subgroup coset
representatives.

Finally, Chapter 6 concludes with some ideas for further work in frames.



CHAPTER 2
PRELIMINARIES

2.1 Frames in Hilbert Space

A frame, in the simplest sense, is a generalization of a basis for a vector space. For a
finite-dimensional vector space, this generalization can be characterized quite simply.
While a basis is a set of linearly independent vectors which span the space, a frame is
any set of vectors which span the space. In other words, the vectors of a frame may
be linearly dependent.

Allowing a spanning set to be linearly dependent offers several benefits, including;:
e Redundancy

e Relaxed conditions, making it easier to find a spanning set with additional

properties (e.g. group structure).

For an infinite-dimensional space, the situation is slightly more complicated. In-
stead of spanning sets there are complete sequences, but not every complete sequence
is a frame [18].

Fortunately, there is a definition which is valid for both the finite- and infinite-

dimensional cases.



Definition 2.1 Let H be a Hilbert space and {v;}iez € H. If there exist constants

A, B > 0 such that, for every x € H
Allz]* <) K, vi)* < Blal? (2.1)

then the sequence {v;} is called a frame. The constant A which is mazimal is called
the lower frame bound and the constant B which is minimal the upper frame

bound.

If A = B the frame is called a tight frame. If A = B = 1, Equation 2.1 becomes
the Parseval identity (Equation 1.2) and so the frame is called a Parseval tight
frame, or Parseval frame. A uniform (or equal-norm) frame is a frame in which
all vectors have equal norm.

As mentioned, the above definition is valid for both finite-dimensional and infinite-
dimensional spaces. However, for a finite-dimensional space, the condition that the
frame spans the space is sometimes more convenient to use than the frame bounds.

This leads to an alternate definition for a finite frame

Definition 2.2 Let H be a finite-dimensional Hilbert space and {v;}%_, C H such

that span{v;} = H. The sequence {v;} is called a frame.

It can be shown that this is equivalent to Definition 2.1. The following proof is
adapted from Proposition 3.18 of [18].
Proof: First, suppose that {v;}*_, does not span H. Then there exists a nonzero

vector x such that z is in the orthogonal complement of span{v;}%_ ;. Thus, for all 4,



(x,v;) = 0. But then
k

Sl v =0

i=1

Therefore, A = 0 in Equation 2.1. In other words, there is no lower frame bound,
and so {v;}¥_; is not a frame.

Conversely, suppose that {v;}%_, violates the lower frame bound condition of Def-

inition 2.1 (the upper condition always holds for a finite sequence). Then, for every

m € N, there exists vy, € H such that ||y,,|| =1 and

Since {ym}r—; is a bounded sequence, it must have a convergent subsequence {,, }

with limit vector y. Thus

k

0= Jim 3 [t 0
=1

k

=D Iy, vl

=1

and y is orthogonal to every v;. So either y = 0 or {v;}*_; does not span H, but
lyl| = 1 since every ||y, || = 1. Therefore, span{v;}%_, # H.
]

It follows from this definition that every basis is also a frame.

Next, we look at a few simple examples of frames.



Example 2.1 The vectors {x;}3_, given by

is a frame for H = R2.

Notice, in particular, that it is acceptable to repeat a vector multiple times in a frame.
Consequently, the idea of a frame as a set of vectors, while convenient in casual
discussion, is actually not the best description, which is why we define a frame as a
sequence of vectors. However, this can also have its problems in some applications.
For example, we may wish to treat two frames as equal to each other if they contain
the same vectors in a different sequence ordering. See Section 2.6 for more details.

The next example is slightly more interesting. It will be revisited in Chapter 3.

Example 2.2 (Mercedes-Benz Frame) The vectors {x;}3_, given by

is a frame for H = R2.
Another example shows a simple frame in the infinite-dimensional case.

Example 2.3 Let {¢;}2, be an orthonormal basis for the Hilbert space H = (*(N).

Then by repeating each element of {e;}5°, twice we have

{wi}i2, = {er,e1,ea,69,.. .}



which 1s a tight frame for H with A= B = 2.

Chapter 5 will continue exploring frames in the infinite-dimensional setting.

2.2  Analysis Operator and Frame Operator

We begin the study of frames by defining some operators that are associated with an
arbitrary sequence of vectors. Then we study the properties of these operators, and

show how they relate back to sequences of vectors which are frames.

Definition 2.3 Let H, K be Hilbert spaces, with K of dimension k. Let {e;}¥_, be
an orthonormal basis for K, and {v;}¥_, C H. The analysis operator is the linear

operator © : H — K such that

(x,vE)

When dealing with more than one set of frame vectors, it will often be convenient to

use a subscript notation to differentiate between their respective analysis operators.

10



For example, if {v;}*_; C H and {w;}¥_; C H, then
k k

O,z = Z(x, viye; and  Oux = Z(x, w;)e;

i=1 i=1

Definition 2.4 The synthesis operator is the adjoint of the analysis operator.

This is equivalent to
k

Oz = Z(x,eﬁvi

i=1
for x € K, which can be derived from the definition of the analysis operator. Alter-

natively, the synthesis operator can be characterized by
@*61‘ = V;
and this can be derived from the previous equation and the properties of orthonormal
basis, by plugging e; in for .
Definition 2.5 The frame operator is the operator ©*0.

From ©*e; = v; it follows that

k
0"0zr = Z(x, V;)V; (2.2)
i=1

The frame operator is often denoted by S.

Definition 2.6 The Grammaian operator is the operator ©O*.

11



If K = C*, then from the above definitions

O0*r = O(0"r)

(O x,v;)e;

I

=1

(x, Ou;)e;

I
,MF

1

k
z, E Uzavj €;
1 7=1

E v],vl xe] €;
Jj=1

1

I
E

<.
Il

I
Mw

=1

|
s

T

where A = ((vj,v;)). That is, ©©* is the matrix

-<v1,vl) (v, v1) ... (vk,vl)-
00 — (v1,v9) (v, v9) ... (Ug,v2)
_(vl,vk> (v, V) ... (vk,vk>_

Note in particular that the diagonal elements of the Grammian are ||v;||?. See Prop-
erty 2.9 for more details.

In addition to these standard operators, it will also be useful to take compositions
of operators associated with different sets of vectors. That is, to create operators of

the form
k

0;0,r = Z(w,vi>wi

=1

12



We now review some of the basic properties of these operators, beginning with

the analysis operator.
Property 2.1 The analysis operator is injective if, and only if, {v;}¥_, is a frame.

Proof: First, suppose {v;}£_, is a frame. If ©Ox = 0, then

and since e; is a basis, (x,v;) = 0 for all 7. Since {v;}*_, is a spanning set for H, there

exists a; such that @ = ). a;v;, which gives

Therefore, x = 0, and the kernel of © is trivial, so the analysis operator is injective.

Now, suppose instead that the analysis operator is injective. Suppose, by way of
contradiction, that the span of {v;}%_ | is not the entire space H. Then pick y such
that y L span{v;}*_, and y # 0. Thus, (y,v;) = 0 for all 4, and so Oy = 0. But then
the analysis operator is not injective, which is a contradiction. Therefore, {v;}¥_,
spans the entire space, and so is a frame.

Property 2.2 If {v;}}_, is a Parseval frame, then the analysis operator is an isom-

etry.

13



Proof:

H@MHQ = (0,7, 0,1)

= (0;0,z, )

<Z<x,vi)vi,x>

=1

(x,v;)(vy, )

WE

1

~.
I

|<£E,Ui>|2

E

1

= ||=||*

.
Il

Where the last equality follows from Equation 2.1, with A = B = 1, since {v;}}_, is
a Parseval frame. Therefore, the analysis operator is an isometry.

Property 2.3 Let T : H — H be a linear operator so that the set of vectors {Tv; }¥_,

has analysis operator Or,. Then Op,x = 0, T x.

Proof:
k
Or,x = Z(x, Tv;)e;
i=1
k
= (T*z,v;)e;
i=1
=0,z
n

14



Property 2.4 Let a be a scalar so that the set of vectors {awv;}¥_, has analysis op-

erator O,,. Then ©.,, = aO,.

Proof: This can be shown from the definition, or simply by using Property 2.3 with
T=al.
u

Next, we give some of the properties of the frame operator.
Property 2.5 The frame operator is invertible if, and only if, {v;}¥_, is a frame.

Proof: If S~! exists, then for all z € H
k
T = Z(:B, S~ ;)

=1

by Proposition 2.2. Thus {v;}*_, spans H, and so is a frame.

Conversely, suppose {v;}¥_; is a frame with analysis operator ©. If z # 0 € H,
then Oz # 0 € ©(H), by Property 2.1. Since K = ker ©*@Range O, ify # 0 € O(H),
then ©*y # 0. Thus, ©*(Ox) = ©*Ox # 0. Therefore, ©*0O is invertible.

]
Property 2.6 The frame operator is self-adjoint.
From the definition, S* = (0*0)* = 0*(0*)* = ©*© = S.

Property 2.7 The frame operator is the identity operator I if, and only if, {v;}¥_,

1s a Parseval frame.

This follows from the reconstruction formula. See Section 2.3 for more details.

15



Property 2.8 The frame operator is a scalar multiple of the identity operator, A,

if, and only if {v;}¥_, is a tight frame with frame bound ).

Proof: Let {v;}_, be a tight frame with frame bound A > 0, so that for all x

k
Mzl = 3 I, v)f?

=1

k
el = A3 I, v

=1

k

= AR )
=1

k
=D e A0
i=1

Thus the set of vectors {A\~'/2v;}%_ | is a Parseval frame. From Property 2.7, this

frame has frame operator I, and so by Property 2.4

] - 63*1/21)@)\_1/21)
= APere,N
=\"'0:0,

A =070,

Therefore the frame operator is a scalar multiple of the identity operator.
]

Finally, we show a useful property of the Grammian operator.

16



Property 2.9 For a frame {v;}*_, with © its analysis operator, tr(©0*) = S5 [jv;||.

Proof: Let © : H — K be the analysis operator for the frame {v;}%_,. Then the
Grammian operator ©O* is an operator from K to K. So if {e;}%_, is an orthonormal

basis for K , then by the definition of the synthesis operator

k

r(00%) =Y (007, ¢;)
=1
k

= (0%, 0%;)
=1
k

= Z(Ui>%’>

=1

k
= > llill?
i=1

2.3 Parseval Frames

One of the most important properties of an orthonormal basis for a vector space
is the ability to represent any vector x in the space as a linear combination of the
basis vectors, where the coefficients are unique in that basis. Indeed, if {e;}?, is an

orthonormal basis, then
n

T = Z(m,ei)ei

i=1
It turns out that there are sets of vectors other than orthonormal bases which exhibit

this extremely useful reconstruction property.

17



Definition 2.7 Let {v;}}_, be a set of vectors in H, and v € H. Then the recon-

struction formula is
k

T = Z(a:, v;)V; (2.3)

i=1
This is equivalent to the equation z = ©;0,z. In other words, the frame operator is

the identity operator. This leads to the following theorem

Theorem 2.1 A set of vectors {v;}*_, C H is a Parseval frame if, and only if, it

satisfies the reconstruction formula (Equation 2.3).

Proof: Suppose {v;}¥_, satisfies the reconstruction formula. Then

[E

—~

x,T)

k
i=

Z<I, Ui>vz‘; I>

1

hE

({x,v;)v;, )

(2

hE

(x,v;)(vy, T)

(2

[, i) [?

B

1

(2

Therefore, the Parseval identity is satisfied for all z € H, and so {v;}}_, is a Parseval
frame.
Conversely, suppose {v;}¥_, is a Parseval frame. By Property 2.2, ©,, is an isome-

try, and so it also preserves inner products. Let {u;}! ; be an orthonormal basis for

18



H and {e;}*_, be an orthonormal basis for K. Thus

n

xr = Z(x,uﬁul

i=1

— Z Z Z ((z,v)e;, (Wi, Um)em) u;

i=1 j=1 m=1

=Y 30 (o) (om, wi) e, em)ui

i=1 j=1 m=1

n k
= Z Z<x7 Uj><vjﬂ i) u;
i=1 j=1
k n

= Z(JJ, Uj> Z<Uj7 ul)”l

j=1 i=1
k

=Dz

J=1

Therefore, the reconstruction formula is satisfied, as required.
]

Parseval frames are an important class of frames with many useful results. As was
just shown in Theorem 2.1, Parseval frames satisfy the same reconstruction formula

as orthonormal bases,
k

r = Z(w,v»vi Ve e H

i=1
This allows for easy computation of the linear combination coefficients using the inner

product. However, unlike for orthonormal bases, a Parseval frame representation for

19



a vector is not necessarily unique.

Parseval frames make up for this with the added advantage of redundancy. Theo-
rem 2.4 is one example of that redundancy where, under certain conditions, removing
one vector of a Parseval frame leaves a collection of vectors which still form a frame
(i.e., they still span the space).

What follows are some of the basic results for Parseval frames, beginning with a
very important theorem which shows that every frame has a Parseval frame associated

with it.
Theorem 2.2 For any frame {v;}¥_,, the set {S™%v;}t_| is a Parseval frame.

Proof: It is enough to show that {S~1/2v;}k_ satisfies the reconstruction formula

= (S7V25571),

= §57125(S7 )

k
= G512 Z(S_l/zx, Vi) V;

i=1

Z 5 1/21)1 —1/2,,

B

since S, and thus S~%/2, is self-adjoint. Therefore, {S~/2v;}% | satisfies the recon-
struction formula and is a Parseval frame.

Proposition 2.1 If {v;}}_, is a Parseval frame, then for all i, ||v;|| < 1, with equality

if, and only if, v; is orthogonal to all v; where j # 1.

20



Proof: From the Parseval identity,

lvjl|* = Z| vj vid|* 2 (v, ) [* = s *

Thus, ||v;|| <1 for all j.

For equality, suppose ||v;|| = 1. Then
k
= Jlosl* = D 1wz v P = Lo, 0) P+ Y Koy, 0
i=1 i#

which implies that (v;,v;) = 0 for all i # j.

Conversely, suppose v; is orthogonal to all j # ¢. Then

v lI* = Z! v, i) = (v, v = [l

so that [|v,|| =1 if v; # 0.
u

This leads to the following Corollary.

Corollary 2.1 Let {v;}¥_, be a Parseval frame. Then {v;}¥_, is an orthonormal basis

if, and only if, every v; is a unit vector.

In fact, a more general proposition proved identically to Proposition 2.1 gives ||v;||* <
A for a tight frame with frame bound A, with equality only for v; which are orthogonal

to all v; such that j # i.

21



For a general frame with upper frame bound B

k
Bllosl® 2 ) [vj, 00)* = 1vz v5) P = llogl*
=1

so that ||v;]|? < B for all v; # 0.

Lemma 2.1 Let H be a Hilbert space of dimension n < k. If {v;}}_, is a uniform

Parseval frame, then ||v;||> = % for all i.

Proof: Since the frame is Parseval, ©*© = I,, by Property 2.7. By the definition of

uniform, ||v;|| = ||v;]| for all 4, j. Combining this with Property 2.9 gives, for any j
L&
ol = £ 3
i=1

_ oo

= 3 r
Lir(©70)

= —tr
k
1

n

ok

Theorem 2.3 Let H be a Hilbert space of dimension n < k. If {v;}f., C H is a

uniform Parseval frame, then for any index j, {v;}iz; is still a frame.

22



Proof: From Equation 2.1, Vo € H

k
2l = I, vi)?
i=1

k
= [z, o)+ ) [z, v3)
=
k
< lalPllofl? + > 1, vi)
=

by Cauchy-Schwarz. Thus

k

Izl = Jlog1?) < D 0P
=
Therefore, provided (1—||v;||?) > 0, there is a lower frame bound and so the remaining

set of vectors is a frame. But by Lemma 2.1, |[v;]|* = 2 for all j, and since

k>n

1> 2
3

n
1—=—>0
k

the lower frame bound exists, and the set of vectors is a frame.

In fact this is a special case of a more general theorem which makes use of Proposi-

tion 2.1.

Theorem 2.4 Let H be a Hilbert space of dimension n < k. If {v;}}_, C H is a
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Parseval frame, then for any index j where v; is not orthogonal to every v; such that

i # J, {vi}izj is still a frame.

Proof: The proof is similar to the proof of Theorem 2.3, where Proposition 2.1 implies
that ||v;|| < 1 since v; is not orthogonal to every v; with i # j. Thus (1 — [lv;]|?) > 0,
so there is a lower frame bound for the remaining vectors, as required.

u

Note that for an orthonormal basis, there is no such v; not orthogonal to every other
v;, which corresponds to the fact that removing one vector from an orthonormal basis

leaves a set which does not span the space.

2.4 General Reconstruction Formula and Dual Frames

For general frames, there is also a reconstruction formula similar to Equation 2.3. Let
{v;}5_| be a frame for H. Then, there exists a frame {w;}*_; such that every z € H

can be reconstructed with the formula

xr = Z(m,wiwi = Z(x, V) w; (2.4)

Definition 2.8 Let {v;}}_, be a frame for H. Then any frame {w;}*_, which satisfies

Equation 2.4 is called a dual frame for {v;}*_,.

The frame {S~'v;}¥_ | always satisfies this reconstruction formula and is called the
canonical (or standard) dual frame. Any other frame which satisfies the equation

is called an alternate dual frame.
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Proposition 2.2 The set of vectors {S™ v;}¥_ is a dual frame for {v;}%_,.

Proof: Substituting S~z for z in Equation 2.2 gives

k
St = Z(m,v»vi

i=1
k

S(S7'z) = Z(S’lm,vﬁvi
i=1
k

x = Z(m, S~ ),
i=1

since S, and thus S7!, is self-adjoint. Similarly, applying S~! to both sides of Equa-

tion 2.2 gives

Therefore
xr = Z(x, S~ v = Z(x, v;) Sty (2.5)

as required.

The next result gives a characterization for all of the alternate dual frames of a given

frame.

25



Proposition 2.3 Every dual frame of {v;} is of the form w; = S™'v; + h;, where
k k
> (woghi = (e hijuy =0, VeeH

i=1 =1

Proof: Let {w;} be a dual frame for {v;}, and define h; = w; — S~ 'v;

k k
Z(x, viYh; = Z(az,vﬁ(wi — Sflvi)
i=1 i=1
k k
= Z(x,w)wi - Z(x,vi)s_lvi
i=1 =1
=x -z
=0

Conversely, suppose {w;}%_ | is a set of vectors such that w; = S~v; + h;, where

Z§:1<x7vi>hi = 0. Then

k k
D woviyw = (z,0) (S i + hy)
=1 =1
k
= Z(ZL‘, Ui>S_lvi + Z<I7Uz>hz
=1 i=1
=z+0
=x

Thus {w;} satisfies the dual reconstruction formula, and so it is a dual frame for {v;}.
The proof for S°F  (, hy)v; = 0 is similar.
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The condition that 3% (x,v;)h; = 0, or in operator notation 950, = 0, is related
to the concept of orthogonal frames. See Section 2.5 for more details.

Next, we review some properties of the canonical dual frame.

Let {v;}*_; be a frame with frame operator S and canonical dual {S~v;}F_,.

Property 2.10 If {v;}}_, is a Parseval frame, then it is its own canonical dual.

This follows from Property 2.7, that the frame operator of a Parseval frame is the

identity operator S = I, so that {S~ v }F_, = {v;}F,.

Property 2.11 If {v;}¥_, is a tight frame with frame bound X\, then {\~‘v;}¥_, is its

canonical dual.

This follows from Property 2.8, that the frame operator of a A-tight frame is S = A[,
so that {S™lv;}r | = {\ "ty }k .
The next two properties together show that a frame and its canonical dual frame

are actually canonical duals of each other.
Property 2.12 The frame operator for {S~1v;}r_, is S71.

Proof: Let ©g-1, be the analysis operator for the canonical dual, so that T =

*

41,051, is its frame operator. Then by Property 2.3

T =05.,05,
= (57'0;)(0,57")
— 571(0;6,)5""
= 57Y(5)S?

— 51
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Property 2.13 The canonical dual of {S™ v, Y%, is {v;}F_;.

That {S™v;}F_; and {v;}F_, are dual frames of each other is readily apparent from
the definition of dual frames and Equation 2.5. That {S~!v;}*_, is the canonical dual

of {v;}¥_, follows from Property 2.12, since 77! = S.

2.5 Orthogonal Frames

Let {v;}*, € H and {w;}}, ¢ K with ©, : H — C* and ©,, : K — CF* their
respective analysis operators. Then {v;} and {w;} are orthogonal sequences if the
range space of ©, is orthogonal to the range space of ©,,, that is, ©,(H) L ©,(K).
In addition, if {v;} and {w;} are frames for their respective spaces, they are called
orthogonal frames.

Orthogonal frames are useful in applications such as multiplexing of data and
will be revisited in Chapter 5. In addition, the following result shows that orthogonal
frames are related to the characterization of all possible alternate dual frames as given

in Proposition 2.3.
Proposition 2.4 0,(H) L 0,(K) if and only if ©:0,, =0

Proof: First, suppose ©;0,, =0. Then foralla e H, b€ K

(0,a,0,b) = (a,0;0,b)
= (a,0)

=0
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So that ©,(H) L 0, (K).
Now, suppose that ©,(H) L 0,(K). Then for alla € H, b€ K

0= (0,a,0,b) = (a,0;0,0b)

and since this must hold for all a« € H, ©;0,,b = 0. And since this must hold for all
be K, ©,0, =0.

2.6 Similar Frames

Definition 2.9 Let {v;}¥_, and {w;}¥_, be frames. Then these frames are said to be
similar if there exists an invertible operator T such that Tv; = w; fori=1,... k.

If T is a unitary operator, the frames are said to be unitarily equivalent.

Similar frames are denoted as {v;}¥_; ~ {w;}*_,. Clearly every frame is similar to its
canonical dual frame. More importantly, from Theorem 2.2 every frame is similar to

a Parseval frame.

Property 2.14 Similarity (and consequently unitary equivalence) is an equivalence

relation.
Proof: Let {v;}, {w;}, and {z;} be frames. Let T, S be invertible operators.
e Reflexive: For all i, Tv; = v;, so that {v;} ~ {v;}.

e Symmetric: For all 4, if Tv; = w;, then v; = T w;.
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e Transitive: For all ¢, if Tv; = w; and Sw; = z;, then z; = Sw; = S(Tv;) =

(ST)v;, with (ST) invertible.

Proposition 2.5 If {v;} and {w;} are similar, Range(©,) = Range(©,,).

Proof: Suppose Av; = w;, for all i, where A is invertible. Let y € Range(©,). Then

there exists x such that

Y =0, =0 -1, = @w(A_l)*x

so that y € Range(©,,). Thus Range(©,) C Range(©,,).

Similarly, if y € Range(©,,), then there exists « such that

y=0,r=0,1r=0,A"

so that y € Range(©,). Thus Range(0,,) C Range(©,).
Therefore, Range(0,) = Range(0,,).
u

Note that if {v;} and {w;} are unitarily equivalent, this becomes

0,2 =0,Ar and ©O,z=06,A%z
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2.7 Operator Trace Using Dual Frames

Let T be a linear operator on a Hilbert space H having dimension n. Then the trace

of T' is defined as tr(T) = Y ,(Te;, €;), for any orthonormal basis {e;}I; of H.
The standard proof of the independence of the choice of the orthonormal basis for

calculating the trace appears to use only the reconstruction property of orthonormal

bases. So consider the following generalizations using dual frames.

Theorem 2.5 Let T be a linear operator on H having dimension n. Let k > n
and € > n. If {e;}_, and {fi}i_, are frames, with dual frames {v;}¥_, and {w;}i_

respectively, then
k ¢

Z<T€i>vi> = Z(Tfi,wﬁ

i=1 i=1

Proof:

k k

Z<T€“v’ _Z (Z Te;, wj)f ), ;)

i=1 i=1

= ZZ<T€iawj><fj7'Ui>

V4 k
= ZZ(fj,vﬁ(ei,T*wﬁ
- z (z fu)e ) Ty
= Z(fjaT*wﬂ

V4
= Z<Tfjawj>
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Corollary 2.2 For any Parseval frame {fi}f_,, tr(T) = Zfﬂ(Tfi, fi)-

Proof: For any orthonormal basis {e;}7, of H, using {e;}, = {v;}?, and {f;}}_, =

{w;}*_, in the above theorem gives

Using T'= S = I, in the above Corollary gives an alternate proof that the sum of the

frame vector norms is the dimension of H, without using the Grammian matrix.

Corollary 2.3 For any Parseval frame, {fi}%_,, on a Hilbert space H of dimension

k
n, i Ifill* = n.

Proof:
n = tr(l,)
k
= Z<Infi> fi)
z;l
=Sl

The following Corollaries for general frames mirror the ones for Parseval frames
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Corollary 2.4 For any frame { f;}£_, with dual frame {w;}*_,, tr(T) = S2F_ (T fi, w;).

Proof: For any orthonormal basis {e;} ; of H, using {e;}!, = {v;}; in the above

theorem gives

Using T' = I, in the above Corollary

Corollary 2.5 For any frame, {fi}5_ | with dual frame {w;}¥_,, on a Hilbert space

H of dimension n, S5 (fi,w;) = n.

Proof:
n = tr(l,)
k
= _(Infiywi)
z:l
= Z(fz‘, wi>

In addition, if the dual used is the canonical dual

Corollary 2.6 For any frame, {f;}¥_, with frame operator S and canonical dual

frame {S7UFYE L tr(S) = S8 |1 fill? and tr(STY) = 08 (1S A%
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Proof:

k

tr(S) = Z(S(S_lfi)a fi)
k

= {fi. fi)

=1

k

= IIfil?
i=1
k

(ST =Y (STULSTHR)

i=1

k
=Y ISl
i=1

]
Finally, the independence of the choice of Parseval frame in the trace shows that no
Parseval frame can have a Parseval frame as a proper subset (with non-zero vectors

omitted).

Corollary 2.7 If {fi}t_, is a Parseval frame for a Hilbert space H of dimension
n, then there is no Parseval frame {fi}¥_,, with n < k < ¢, with some f; # 0 for

k<g </

Proof: The proof is by contradiction. Let {f;}¥_, C {f;}{_, both be Parseval frames,
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with f; # 0 for some k < j < ¢. Then by the trace,

V4 k
AL =D IfP=n-n=0
=1 =1
l k k
STAIP I IA =D NfIP=0
i=k+1 i=1 =1
V4
ST fIF=0

i=k+1

But this is impossible if f; # 0 for some k < j < ¢. Therefore, there is no such
Parseval frame with a Parseval frame (or orthonormal basis) as a proper subset.
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CHAPTER 3
GROUP REPRESENTATION FRAMES

Several special classes of finite frames exist by allowing for some structure in the
set of frame vectors, rather than just an arbitrary collection. One such structure is the
group structure. Specific types of groups, such as cyclic and abelian, will demonstrate

different properties in their associated frames.

3.1 Unitary Representations

Let G be a group, and H a Hilbert space. Let B(H) denote the set of bounded, linear
operators from H to H. An operator T € B(H) is called unitary if T* = T~!, that

is, if the adjoint operator of T is the inverse operator of T

Definition 3.1 The set of all unitary operators of H form a group, and a group
homomorphism m from G into this group of unitary operators is called a unitary

representation.

Definition 3.2 For any unitary representation m, the commutant is the set
m(G) ={T € B(H) | Tn(g9) = n(9)T, Vg € G}

The following properties hold for any unitary representation.

Property 3.1 For any unitary representation m, w(e) = 1.
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Proof: Since 7 is a homomorphism

n(e) = n(gg ™)

= n(g)m(g™")
=n(g)m(g)”"
.y

Property 3.2 For any unitary representation m, w(g)* = w(g~1).
Since 7(g) is unitary, m(g)* = w(g)~' = 7w(g7!)
Property 3.3 For any unitary representation m, ||w(g)&|| = ||€|| for all g € G.

Proof: Since w(g) is unitary

17 (9)€ll* = (m(9)€, m(9)€)
= (& m(9)'m(9)€)
= (£, €)
= |l&l®

3.2 Frame Representations

Definition 3.3 A unitary representation on a Hilbert space H is called a frame

representation if 3§ € H such that {m(9)&}sec is a frame for H. In this case & is
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called a frame vector for m, and 7 is said to admit a frame.

For frame representations, most definitions follow directly from those of a general
frame. Let {7(g){}4ec be a collection of vectors in H, and {x,} an orthonormal basis

for K = (*(G).
Definition 3.4 The analysis operator is the operator © : H — K defined by

Oz = ZG(fU»W(9)§>Xg

A given frame representation can admit multiple frame vectors, and so the subscripted

notation will be useful

Oc = (v,m(9)6)x, and O, =) (z,7(g)m)xy

geG geqG

Note that this notation is inconsistent with the notation given in Chapter 2 for general
frames, since here the subscript denotes the frame vector of the representation, rather
than the vectors themselves. For example, when applying a linear operator, as in

Property 2.3, the notation ©p; means

Ore = Y (2, 7(9)TE)xq

geG

rather than

Z<$, T(9)§)xg

geG

In general, these two are different unless 7' € w(G)'.

Definition 3.5 The synthesis operator is the adjoint of the analysis operator.
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Oz =Y (r,xy)7(9)¢

geG

or

O xy = 7(9)¢

Definition 3.6 The frame operator is the operator ©*0.

00z =) (zr,7(g)¢)m(g)¢

geG

Definition 3.7 The Grammian operator is the operator ©O*.

In addition, it will also be useful to take compositions of operators associated with
different frame vectors for a given representation. That is, to create operators of the

form

0;0: = Y (x,m(9)&)7(9)n

geG

The first result is a basic property of frame representations.
Proposition 3.1 If w(g) admits a frame, it is a uniform frame.

Proof: This is an immediate consequence of Property 3.3, since every vector in the
frame has the same norm, the norm of the frame vector &.
]

In addition to the properties for the analysis and frame operators given in Chap-
ter 2, we have the following additional property for the frame operator of a group

representation frame.
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Property 3.4 The frame operator is in the commutant of 7(g).

Proof: This follows from S = 6265 and Lemma 3.3. See Section 3.3 for more details.
| |

Consequently, S~! is also in the commutant of 7(g). This leads to the following

Proposition 3.2 If £ is a frame vector so that {n(g)¢}gec is a frame for H, then

S—1¢ generates a dual frame for {m(g)¢}gec-

Proof: From Proposition 2.2, {S™'7(g)¢},ec is a dual frame for {n(g)¢},eq, and
since S~! commutes with 7(g), this becomes {m(g)S ¢} ec-
u

We say that (£, S71) form a dual pair.

3.3 Commutant of Group Representation Frames
Lemma 3.1 If T € n(G)', then Op = ©T*

Proof: For all z € H

Orer = Y (2, m(9)TE)xq

geG

= Z<l‘, Tﬂ-(g)gb(g

geG

= > (I"x,7(9)§)Xy

geG

= @gT*fL’
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Lemma 3.2 If 7(g) admits a Parseval frame vector &, then n(G)' C {6;0. | y,z €

H}
Proof: Let T' € n(G)’". Then from Lemma 3.1
T=1-T

~ 00, T

— 07O

so that T' € {6;0. | y,z € H}. Therefore, 7(G) € {6;0. | y,z € H}.
]

In addition

Lemma 3.3 {6;0. | y,z € H} C n(G)
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Proof: If T'= 0,0, for some y, 2 € H, then for any v € H

TT{'(h,).’L' = @Z@{/T(h)l’

- Z(w(h):c,ﬂ(g)2>ﬂ(g)y

geG

= {z,7(h)m(g)2)7(g)y

geG

=> (z,m(h 'g)z)m(g)y

gelG

= rm(h)m(h ™) Z<$, m(h™'g)z)7(9)y

geqG

= 7(h) 3 @ 7)) (o)y

geG

=7(h) Y (z, 7 (b7 g)2)m(h " g)y

geG

= 7(h) Z(x,w@)z)ﬂg)y

geaG
— 7(h)O! 0.0

=m(h)Tx

so that, T' € m(G)". Therefore, {©;0. | y,z € H} C 7n(G)'".

Theorem 3.1 If w(g) admits a Parseval frame vector &, then m(G)' = {@Z@n RWAS
H}

Proof: Follows from Lemma 3.2 and Lemma 3.3.
|

In fact, a more general result is given by the following.
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Theorem 3.2 7(G)" = span{©;0, | {,n € H}
Theorem 3.3 Range © = Range ©, <= § ~ n i.e. 3 invertible A € ©(G)" s.t.
AL =1 = An(9)¢ = 7(9)n

3.4 Unitary Equivalence

Recall that if two frames are unitarily equivalent, denoted {m(9)¢},ec ~ {o(9)n}ec,

then there exists a unitary operator U such that for all g € G

In addition, if two unitary representations are unitarily equivalent, denoted m ~ o,

then there exists a unitary operator U such that for all g € GG

Lemma 3.4 If {n(9){} ~ {o(g)n} as frames, then U = n.

Proof: Let {n(g){} ~ {o(g)n} as frames. Then, by definition, there exists a unitary

operator U such that Un(g)¢ = o(g)n, Vg € G. Thus, by Property 3.1
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Lemma 3.5 If {n(g9){} ~ {o(g)n} as frames, then 1 ~ o.

Proof: Let {n(g){} ~ {o(g)n} as frames. Then, by definition, there exists a unitary

operator U such that Un(g)¢ = o(g)n, Vg € G. Thus, by Lemma 3.4

Therefore, m ~ ¢ by definition.

3.5 Abelian and Cyclic Groups

An abelian group is one where the group operation is commutative.

A cyclic group G = (a) is a group of the form {a’ | i € Z}, where a° is the identity,
and a'™/ = a'a’. An immediate consequence is that every cyclic group is abelian.

Frame representations induced by abelian and cyclic groups have additional prop-
erties.

One example of a group frame where the group is cyclic is the Mercedes-Benz
frame from Example 2.2. This frame is equivalent to the 3rd roots of unity, and each

vector in the frame comes from a group operation of “rotation by 120 degrees”.

Example 3.1 (Mercedes-Benz Frame) The vectors {z;}3_, given by



is a frame for H = R2.

For one particular cyclic group, the K-th roots of unity, the following lemma will

be useful.

Lemma 3.6 If 2% s a K-th root of unity that is not equal to 1, then

K-1
627ri%n =0
n=0
Proof:
K-1 K
627ri% 62%1%7@ _ Z 6271'7/%77/
n=0 n=1
K-1
_ Ze%ign) +€2m‘§K
n=1
K-1
_ e27ri2n> 4 2miA
n=1
K-1
— 6271'1'271) 4 1
n=1
K-1
_ eQﬂi?n) 4 270
n=1
K-1
_ 627ri%n
n=0

Therefore, 2% = 1, or Zf;ol e2miRn = (),
]

The following results are summarized without proof from Han and Larson. The
first is Proposition 1.14 in [19], which says that distinct alternate duals for a given

frame are never similar.
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Lemma 3.7 Suppose that {x,} is a frame and {y,} is an alternate dual for {x,}.
If T € B(H) is an invertible operator such that {Ty,} is also an alternate dual for
{z,}, then T = 1.

The next result is Corollary 3.14 in [19], adapted for our notation.

Lemma 3.8 Let G be an abelian group and let w be a representation of G on a Hilbert
space H. Suppose that £ is a Parseval frame vector of m for H. Then for every frame

vector ) for H, there is a (unique) invertible operator V € m(G)" such that n = V.
These two results combine together to prove the following.

Proposition 3.3 Let {m(g)&} e be a frame, with G an abelian group. Then the only

dual frame for {m(g)&}g4ec with the same group structure is the canonical dual frame.

3.6 Orthogonal Group Frames and Super-Frames

As discussed in Section 2.5, we say that two sequences are orthogonal if the range
spaces of their respective analysis operators are orthogonal. This was shown to be
equivalent to the condition ©50; = 0. If the sequences are also frames we call them
orthogonal frames or strongly disjoint.

In terms of group representation frames, suppose that £ and 7 are frame vectors

for 7. Then {7(g9){}4ec and {m(g)n}yec are orthogonal frames if ©;0; = 0.

Proposition 3.4 Ifn and ¢ generate two dual frames for {m(g){}sec, then u =n—_

generates a sequence which is orthogonal to {m(g)&}gec-
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Proof: For every x € H

> (zw(9)€)w(g)u = (z,7(9))m(9)(n — )

= Az, 7(9))m(g)n — D _(x,m(9)€)m(9)
—0

We say that (£, u) form an orthogonal pair.

Orthogonal frames have applications in multiplexing, and we briefly mention some
of the ideas used later. Let {gzﬁg.e)}je 7 be Parseval frames for Hilbert spaces Hy,
¢=1,...,k. We say that <{¢§-1)}, {(/)5-2)}, . {¢§k)}> is a disjoint k-tuple if {gbgl) S
... B ¢§k)} is a frame for the orthogonal direct sum space H; & ... & H, and is a
strongly disjoint k-tuple if it is a Parseval frame for the direct sum space. A strongly

disjoint k-tuple is also called a superframe of length k [1, 16, 19].

Lemma 3.9 (Han-Larson) {gzﬁg-l) ®...0 (b;k) }ieg is a superframe for H® ... & H
if and only if all of the following hold

(i) Each {¢§-€)} is a Parseval frame for H.

(ii) {¢§-m)} and {(bg")} are orthogonal when m # n
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CHAPTER 4
ERASURES

4.1 Introduction

Suppose we wish to use frames to add redundancy to transmitted data. What follows
is a simple example. Let H = C? and K = C3. Suppose {v;}2_, is a uniform Parseval
frame with analysis operator ©,. A vector z = (xy, z2)’, which is the information to

be transmitted, is encoded by computing ©,x

(x,v1)
O,x = Z(x,vi)ei = |(z,vs)
. (x,v3
The coefficients of ©,z can then be transmitted to a receiver, who recovers x by
computing O} (0,z)
0;(0,z) = (0;0,)r =1z ==x

Suppose, however, that one of the coefficients is lost in tranmission, and the receiver

only receives
<ZL‘ ) Ul)

0

(x,v3)
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The receiver could still potentially recover the transmitted data. By Theorem 2.3, a
uniform Parseval frame which loses one vector is still a frame, and so v; and v3 span

the space. Thus there exists a and ( such that vy = av; + [Bvs, and so

r=0;0,x
= <'T7 'U1>U1 =+ <fL', U2>U2 + <‘T7 U3>U3
= (z,v1)v1 + (z, vy + [fus)ve + (z,vs)v3

= (z,v1)v1 + (@, v1) + B{z,v3)) va + (z,v3)03

where all of the inner products in the last equality were received in transmission.
Thus the receiver can reconstruct = exactly.

This example, while demonstrating the redudant nature of frames, is greatly sim-
plified. In fact, this type of reconstruction requires exact knowledge of which coeffi-
cient was lost in transmission, which is not available in most applications. In addition,
as the number of vectors in the frame increases, the computations needed to recover
x in this way increase in complexity, becoming unfeasable even when possible.

Fortunately, in many applications exact reconstruction is not always necessary,
and so the study of erasures focuses on achieving an optimal estimation of z, given a

loss during transmission.

4.2 Optimal Frames for Erasures

What follows is an overview of the typical method of dealing with erasures, as from
23], et. al.

Let H be a Hilbert space of dimension n, and {v; }}_, a Parseval frame with analysis
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operator ©. The original vector, x, can be coded as Ox and then transmitted to a

receiver, who decodes the data by applying the synthesis operator

O*(Ox)=(©O)r=Ir==x

Suppose, however, that some number, say m, of the components of the vector Oz
are lost, garbled, or delayed in transmission. The received vector can be represented
as KOz, where F is a diagonal matrix of m 0’s and k£ — m 1’s, corresponding to the
entries of Ox that are lost and received, respectively. The 0’s in E can be thought of
as the coordinates of ©x that have been “erased”.

One option to recover the original data is to attempt to compute a left inverse for
EO. An alternative would be to continue to use ©* to reconstruct, accepting the fact
that the recovered data is only an approximation of the original x. The error of the

reconstruction is then given by

r—O"'EOr =0"(] — F)Ox = 0"DOx

where D is the diagonal matrix with m 1’s, corresponding to the lost coordinates of
Ox, and k — m 0’s, corresponding to the received coordinates.

The goal, then, is to find the “best” frames in this circumstance. That is, to find
a frame for which the norm of this error operator is minimized, independently of the
coordinates which are erased. Such frames would then be considered optimal frames
for m-erasures.

To achieve independence of the erased coordinates, we must assign to each analysis

operator (and, thus, to each Parseval frame), a number representing the worst-case
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for the norm of the error operator given m erasures. Thus, let D,, be the set of all

k x k diagonal matrices with m 1’s and £ —m 0’s. Then

dn(0) = max{||©*DO|| | D € D,,}

Now, minimizing d,,(©) over all possible ©, would in some sense, be optimal.
However, it would be preferable if a frame which is optimal for m erasures is, in fact,

optimal for m or less erasures. Thus, we create the decreasing family of frames

Ei(k,n) = oluin d1(©)

k = 1 d
Em(k;m) @egr,,?,l?(k,n) m(©)

where F(k,n) is the compact set of all Parseval frames of k vectors in F". Thus,
O € &, implies that © € &, for 1 < i < m. Therefore, the optimal frames for
m-erasures are the ones whose analysis operator is in &,,, and they are sometimes
referred to as m-erasure frames

There are several results for optimal frames. It was shown that uniform Parseval
frames are optimal for one erasure (1-erasure frames). In addition equiangular, uni-
form Parseval frames are optimal for two erasures (2-erasure frames). These 2-erasure

frames are also known as Grassmannian frames [30].

4.3 Optimal Dual Frames for Erasures

Optimal frames for erasures have some limitations. Firstly, a particular application

may require that vectors be coded using frames with certain specific properties. For
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example, grouping higher concentrations of frame vectors together where more data
is expected to occur would not allow the vectors to be equiangular. Or perhaps it is
desirable for the coding frame and decoding frame to be different, rather than using
a self-dual Parseval frame.

This leads to a slightly different scenario: consider coding a vector using a (not
necessarily tight) frame already chosen, and then, if there are missing coordinates,
reconstructing the vector using a dual frame that minimizes the error of the recon-
struction. Such a dual frame will be referred to as an optimal dual with respect to
erasures.

To make this precise, we adapt the notation from [23]. Let D,, be the set of all
k x k diagonal matrices with m 1's and k — m 0's. For any dual frame pair (X,Y)

with X = {z;}*_, and Y = {y;}F_,, we define
dn(X,Y) = max{||0} DOx|| : D € D,,},

where Oy and Oy are the analysis operators for X and Y, respectively. If J =
{i1,...,i,} are indices where 1 appears in D, then, when approximating = by z =

Z#il iz, 1;)y;, the error operator E; with the given m erasures is

Eyz = (05 DOx)(z)

=T - Z <x7xj>yj

JFeesim
n

:Z(x,xi)yi— Z (z, 25)y;

i=1 A1 i

= Z (z,25)y;.

J=U15eetm
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So the measure of the error operator ©3, DOy tells us the accuracy of the approxi-
mation. Again, we wish to minimize this error operator so that a dual frame pair is
optimal for m or less erasures. Thus an optimal dual frame pair can be defined in-
ductively as follow: An (n, k)-dual frame pair (X,Y) is called optimal for m-erasures
if it is optimal for (m — 1) erasures and d,,(X,Y) minimizes d,,(X,Y) for all (n, k)-
dual frame pairs. When restricted to the class of all the (n, k)-Parseval frames, with
Y = X, this reduces to the case for optimal frames described in Section 4.2.

In what follows, we begin by proving the existence of optimal dual frames and then
go on to demonstrate some further results about optimal dual frames. In particular,
we give examples to show that, in general, the canonical dual is not necessarily opti-
mal. Then we show that there exists a large class of frames for which the canonical

dual is, in fact, always optimal for any number of erasures.

4.3.1 Existence of Optimal Dual Frames

Let X = {z;}", be an (n, k)-frame for H, with S the frame operator for X. We say

that a dual frame, Y, for X is an optimal dual frame of X for 1-erasure if

di(X,Y) =min{d;(X,Z) : Z is a dual frame for X},

and Y is called an optimal dual frame of X for m-erasures if it is optimal for (m — 1)-

erasures and

dp(X,Y) =min{d,,(X,Z) : Z is a dual frame for X}.

From Proposition 2.3, Y = {y;}, is a dual frame for X if and only if ¥ =
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S™1X + U for some U = {u;}"_, such that

Z(x,w»ul =0

i=1

for all z € H, that is, ©},0x = 0. Let Nx be the set of all U such that ©},0x = 0.

Then an optimal dual frame of X for m-erasures will be one which minimizes

min{d,,(X,S'X +U):U € Nx}
= min{max{[|(O5-1x, ;s DOx| : D € D,,,} : U € Nx}

= min{max{||S™'O% DOx + O;;DOx|| : D € D,,} : U € Nx}

We first prove the existence of an optimal dual frame for one erasure.

Let z,y € H. We will use x ® y to denote the rank-one operator defined by
(x @ y)(v) = (v,y)x for all v € H.

Note that if D € Dy and Y = {S7'z; + w;}7, with U = {u;}, € Ny, then we
have

103 DO || = [I(S™ s + wi) @ @il | = [1(S™ s + )| - [}l

for some 1 < i < n. Therefore when we consider 1-erasure optimal dual frames, it is

reasonable to assume that z; # 0 for all 1 <7 < n. Thus the function defined by
FU)=d(X,S'X+U) = maX{H(S—lxi +u)|| - |zl 1 <i<n}

will be a continuous function of U with the property that F'(U) — oo when ||U|| — oo,

where we view U as a vector in the orthogonal direct sum Hilbert space H™ :=
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H @ ...® H. Therefore, by restricting to a bounded subset of Ny, the minimum of
F' is attained.

This leads to the following:

Lemma 4.1 Let X = {x;}, be a frame for H with x; # 0 for all i. Then optimal
dual frames of X exist for 1-erasure. Moreover, the set of all the optimal dual frames

of X for m-erasures form a convez, closed and bounded subset of H™.

Proof: We only need to show the convexity of the set. Let Y1) and Y® be two

optimal dual frames of X for m-erasure. Then we have

A (X, YWY = d,,(X,Y?) = min{d,,(X, Z) : Z is a dual frame for X}.

Let Y = AYW 4 (1 = A\)Y® for A € [0,1]. Clearly, Y is a dual of X. It remains to
show that d,,(X,Y) = d,,(X,YM) = d,,(X,Y?). In fact, for any D € D,, we have

107 DOx|| = [[AO}1)DOx + (1 — A6 DOx||
< M©vo, DOx[| + (1 = N)[|67 DO
< M (X, YW) 4 (1= N)d, (X, Y1)

= dp(X, YY) (= dp(X,Y?)

Thus
A (X,Y) < dp(X, YD) = d,, (X, Y?)

and so the equality holds.
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Following from the above lemma and using the induction argument we obtain:

Corollary 4.1 Let X = {x;}!, be a frame for H with x; # 0 for alli. Then optimal
dual frames of X exist for any m-erasures. Moreover, the set of all the optimal dual

frames of X for m-erasures form a convezx and closed subset of H™

The next two sections show that for some cases, the canonical dual frame is the

unique optimal dual frame.

4.3.2 Optimal Dual Frame for a Uniform, Tight Frame

Proposition 4.1 For one erasure, the unique optimal dual frame for a tight frame

with uniform length is the canonical dual frame.

Proof: Let {z;}!_, be a tight frame with equal norms, ||z;|| = 1/2%,Vi. Then S = \I
for some A # 0, and so S~! = ;1. Thus, the canonical dual frame is {2;}. Suppose

{y;} is a dual of {x;}. We need to show

max {[ly] - ||:rz||}>ln<ﬂfgx{||—xz|l [Eal;

e (i} > mas {13

k
glagx{!\yl\l} >\
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Now, by property of the trace

= t1(0,0,)

So, by Cauchy-Schwarz

=1
<3 ol - el
=1

" Nk
=1

Thus, >, |lyill = /™. Now, suppose that

[k
max {[lyil[} <4/~
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Then

n n k
;mw;\/;
\/7
<n m

nk

< -
A

which is a contradiction. Therefore, the canonical dual is an optimal dual for a
uniform tight frame.

In fact, it is the unique optimal dual. Suppose {z;} is an optimal dual frame.

k
max {[lzll} = 4/ -

s ||z < \/5%,Vi. If [|z]| < /5% for some j, then

- nk
;HziH <1/ 5y

which is the same contradiction as above. So, if {z;} is optimal, ||z = 1/ for all i.

Then
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So

k n
N ZHZiH2
=1
"1 1
= T+ hiy i+ Dy
;()\x + 32 + h;)
N ) 1
=Z|I;xill + >[Il +2ZX<%’%‘>
=1 =1 =1

k‘ n
=3 + ) [1ll* + 0
=1

Thus >0, ||hi]]* = 0, and so h; = 0 for all i. Therefore, the canonical dual is the

unique optimal dual.

4.3.3 Optimal Dual Frame for a Group Representation Frame

Let G be a group and H a Hilbert space, with {7(¢g){ : g € G} a frame for H.
First, note that for an abelian group, {m(g)S™!¢} is the only dual with the same

group structure, so the problem is only interesting for non-abelian groups.

Proposition 4.2 For one erasure, the optimal dual frame with the same group struc-

ture is the canonical dual frame.

Proof: Let w(g)n = 7(g9)S™'& + m(g)h, where

> (z,7w(g)E)m(g)h =0

geG
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It follows, by setting x = S~3/2¢ and taking the inner product with S—/2¢, that

(3 (5732, w(g)e)m(g)h, S2€) = 0

geG
> (5712, 7(9)S 7€) (m(9)h, SVV%E) = 0
geG
S (w987, ST, mlg STV = 0
gelG
(h, Z 1/25 S §> (g~ )5_1/2§> —0
geG

(h,871€) =0
Then, since S™! is in the commutant of 7(G) and 7(g) is an isometry

min max ||S~ 7 (g)¢ + 7(g)h|| = m1nmax||7r( ) (ST +h) ||
h geG [US
= minmax ||S™'¢ + A
h geG
= min [|S7I¢ + |
But [|S7I¢ + h||? = ||STY|]® + ||h||?, since STIE and h are orthogonal. Thus, the

minimum occurs when ||h||* = 0, so that & = 0. Therefore, the canonical dual is the

optimal dual with the same group structure for one erasure.

Proposition 4.3 For one erasure, the canonical dual frame is the unique optimal

dual for a group representation frame.

Proof: See Corollary 4.3 below.
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4.3.4 Standard Dual Frame as the Unique Optimal Dual Frame

The results of the two previous sections can actually be shown to be corollaries of a

more general result. We require the following lemma.

Lemma 4.2 [f, for all x € H,
i=1

then >0 (S™ 1z, hy) = 0.

Proof: In operator notation, ©;0g¢-1, = 0, since for any = in H

n n

Z<I, S_1$i>hi = Z<S_1I, I‘Z>hjz

i=1 =1

=0

Therefore, by the property of the trace

Z<S_IZL’Z', hz> = tr(@SflmGZ)

i=1

= tr(@;@,sulx)

=0

as required.

Theorem 4.1 For one erasure, the canonical dual frame is the unique optimal dual
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frame for any frame where

1S~ il - |
1s a constant for all 1.

Let {z;} be a frame with ||S~'z;| - ||z;]] = ¢, a constant for all i. Let {y;} =

{S~1x; + h;} be an optimal dual frame. Then

max | S™w; + - [l < max |87 ] -
< max c

)

<c
Thus

max [y - 2]l < 187 5 - llagll, Vi
lyill - Nlall < 1S~ 5l - llwsl, Vi,
lyill - Nl < IS~ gl - [l ¥

ly;ll < 1S~ a5l Vi
Now, for all ¢

lyll® = 118~ 2 + Rl
= 157 a]|* + 1hall* + 2Re(S ™ s, hi)
1hill* + 2Re(S™ s, ha) = lyall® — 1S~ =il

1hil|* + 2Re(S™ "z, hs) <0
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Thus, by the lemma,

n

> (I1hall® + 2Re(S i, b)) < 0
=1

S lhall? +2Re Y (S wi hy) <0
=1

=1
Z 12:]]* <0
i—1

and so h; = 0 for all i. Therefore, {y;} is the canonical dual frame, and so the optimal

dual frame is unique.

Corollary 4.2 For one erasure, the canonical dual frame is the unique optimal dual

frame for a tight frame with uniform length.

This follows with [|S~Lz|| - ||| = /4.

Corollary 4.3 For one erasure, the canonical dual frame is the unique optimal dual

frame for a group representation frame.

This follows since 7(g) is an isometry for all g, with ||7(g)S™Y|| - ||7(9)&]| = [|S™¢]| -
I€]1-

In fact, since our definition of an optimal dual frame is inductive, that is, a dual
frame which is optimal for m-erasures must be optimal for (m — 1)-erasures, a dual
frame which is the unique optimal dual for 1-erasure must be optimal for any number
of erasures, since there are no other choices. Thus, we can restate the above result

as:
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Theorem 4.2 Let {z;}", be a frame for a k-dimensional Hilbert space H and S be
its frame operator. If ||S™'z;|| - ||z:]| = ¢ is a constant for all i, then the canonical

dual frame is the unique optimal dual frame for any m-erasures.

In viewing Theorem 4.2, we would wonder whether {y;}" , is an optimal dual of
{x;}7y if ||yi]| - ||zs]] is a constant. With the help of Corollary 4.3 we point out that

the answer to this question is negative.

Proposition 4.4 There exists a group frame {m(g)¢}4ec such that it admits a dual
frame of the form {m(g)n}sec that is not the canonical dual, and consequently {m(g)n}gec

1s not optimal.

Proof: Let m be a group representation on H and {m(g)¢}sec is a Parseval frame

for H with the property that there exists g1, g» € G such that

(m(g1)e, m(g2)p) # (m(g2)p, m(g1)p)-

Then by the main result on the uniqueness of dual frame generators in [11], there
exists n € H such that n # S~y and {7(9)n},ec is a dual frame of {7(g)¢},eq, where
S is the frame operator for {m(g)¢}seq. Since 7 is an isometry, ||7(g)n|| - [|7(g)€]| is
a constant for all g € G. However, by Corollary 4.3, {7(¢g)n}4ec is not optimal.
"

One further generalization of Theorem 4.2 requires an additional definition. Let
X = {z;}}-, be a sequence. We say that a decomposition |J;_, [; = {1,2,...,n} is

X -linearly independent if My + ...+ M,, is a direct sum, where M, = span{z;|i € I;}.
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Theorem 4.3 Let{Ily,...,L,} be an X -linearly independent decomposition of {1,...,n}.
Suppose that

IS~ 2l - Nll = ¢
for alli € I;. Then
(i) {S~tx;}, is 1-optimal

(i) Assume Cp = Cpy = ... = Cp > Cp—1 > Ch—a > ... > ¢1. Then {x;}, has a

unique 1-optimal dual if and only if {.xi}ieulyfll 1, s linearly independent.
i

Proof: Let {y;}", be l-optimal, where y; = S~'z; + u;, and

n

Z(w,uz)ajl =0
Z(az, w)Ti + ...+ Z(az:,u)aaZ =0

1;6.[1 iEI’m

Thus, by the X-linearly independent decomposition, for every 1 < 7 <m

Z(:L‘, uj)x; =0
i€l

Let ¢j, = max{c; : 1 < j <m}. Then, forall 1 <i<n

1gill - lll < ¢
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In particular, for all i € I,

lyall - llill < ejo = 187 il - flaa]

lyall < 118~ |

Thus, just as in Theorem 4.1, u; = 0 for all i € I;,. Therefore, y; = Sz, for all

it € I;,. Consequently
max{||S ™ x| - o] 1 1 < i < n} = ¢, = max{||yi|| - |zl : 1 < i < n}

Therefore {S~'x;}1", is optimal for l-erasure as claimed.
For part (ii), assume that {xi}ieuhll 7, 1s linearly independent, and let {y:}~, be
i

a l-optimal dual for {z;}7,, with y; = S7'z; + u; and

n

Z(x,u»xl =0

i=1

for all z € H. From part (i), we already know that y; = S~1a; (that is, u; = 0) for all
1€ [, Ul 1 U...UI,. It remains to check that u; = 0 for ¢ < k. This is immediate,

however, by the linear independence, since
n

:Z@U,ui)xi: Z (x,u;)x;

= . k—1
=1 ZeUj:1 I;

implies that (z,u;) = 0 for all z. Therefore, u; = 0 for all 7+ and the optimal dual

frame is unique.
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Conversely, suppose that {xi}ieuk—ll L is linearly dependent. Then there exists wu;
iz

not all 0 such that

Z (x,uj)x; =0

ielU21 I
for all z € H. Let u; = 0 when i € (Jj_, [;. Then {w;}{; is a non-zero finite

sequence such that
n

Z(x,tui)xi =0

i=1
holds for every x € H, where t # 0 is any constant. Thus Y; = {S™ z; + tu;}7, is a
dual frame for {z;}" ;. Since ||S™ @] - ||z < ¢ = max{||S™ 'z - ||z : 1 < i < n}

foralli e e Uf;ll I; | there exists § > 0 such that if [¢| <, then
1S~ i + tuil| - l2il] < e

holds for every i € Uf;ll I;,. Thus Y, is l-erasure optimal whenever |t| < ¢. This
implies that {z;}?_; has infinitely many l-erasure optimal duals, since {u;}" , is a
non-zero finite sequence.

4.3.5 Examples

One example of a frame where the canonical dual is optimal is a Mercedes-Benz frame.
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Example 4.1 Let H = R?, and consider the frame X = {z;}3_, given by

In fact this frame is a group frame, and the standard dual is the unique optimal dual,

see Corollary 4.3.

All of the results for optimal dual frames presented so far involve the canonical
dual frame and it is natural to wonder if the canonical dual is always optimal, or,
moreover, to wonder if it is always the unique optimal dual.

Next, we give two examples showing that a frame may have infinitely many optimal
duals, and that the canonical dual is not necessarily optimal even if the optimal dual

is unique.

Example 4.2 (Frame with a unique, non-canonical optimal dual)

Let H = R?, and consider the frame {z;}}_, given by

1
1 0 %
1
0 1 v,
This is a uniform length, non-Parseval frame, where ||x;|| = 1, for all i. This frame

has a unique 1-erasure (and hence m-erasure) optimal dual frame which is not the

canonical dual.

First, note that
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and so the standard dual, {S™'z;}, is given by

3 _1 _1
4 4 2¢/2
Y R R R A
4 4 2v/2
Therefore
3 _1 _1
max S~ -l = max S ||| -l ][22
7 1 3 1
4 4 22

Now, consider the alternate dual frame {S~'z; + h;}, where {h;} is given by

2v3-3
2v/2

2+/3-3
22

ol ks
ol ks

NS
|

EN[SUN [V

so that {S™1x; + h;} is

5
5
P

ERS

5
5

[N}
[}
o

69



Thus,

3—/3 1—/3 V3-1
max ||S ™ a; 4 hi|| - 2] = max 2 LI 2 L V2 1
@ 1-v3 3—V3 V3-1
2 2 V2

:max{\/g—l,\/g—l,\/g—l}

=\/§—1<\/§

Therefore,

max ||S_1xl~ + h;|| < max ||S_1xi||
(A 1

and so the standard dual is not an optimal dual. In fact, this alternate dual is the
unique optimal dual. The computations showing this are lengthy, and given in the
following proof.

Proof: An optimal dual frame is the sequence {S™'z; + u;}?_, such that
max{[|S™ ;4 u|}

is minimal for all {u;}3_, where 320 (2, z;)u; = 0 for all 2 € H, and {S~'2;}2, is

the canonical dual given by

3 _1 1

4 4 22
) )

_1 3 _1

4 4 2v/2
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By letting z = e; and x = ey we get

1
1U1 +OUQ—|' —=us = 0

V2
1
Ou1 + 1’LL2+ —=Uusz = 0

V2

and so all such {u;} must be of the form

a —V2a
U] = Uy = , and ug =

b —/2b

and so the function that needs to be minimized is

u+ Sz,

Y

F(u) := max{Hu + 5712y

|

—V2u + Sill’gH} ,

a
where u = :
b
To simplify the calculations, we first point out that there is an optimal dual with
. . a/
a = b. This can be proved if we can show that F(u) < F(u), where u = and
b
a+b
- 2
u =
a+b

2
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a b
Let + : H — H be the involution 7 : — . Note that (S71z))T = S~ lay
b a

and (S~'z3)" = S~las. Therefore we have

i i /9 i
F(a):max{H““ + 51| S s Wh@% }
1 V2 2
- 42671 —= f_ —_ gt
,2Hu+u + sz, 5 U+ U \/5 T3 }

= Imax

= Imax {% Hu +UT + 25—1:[1
{% o+ 57) 4 (0l 575 o+ 570) (0 4+ 5712

)

) ,% (Hu+ S’lxgH + HuT + S’lxg‘
u——=S5"tug uh— —=5"1z,

1 1
= max{é (||u+ S o] + [|(u+ S~ z2)T|) > (|[u+ S o || + ||(u + S a1)T]
u— —=S"ta; (u— iS_lxg)T

(G )}

Fl
1 1
_ max {5 (-t 570 4+ S~} 2 (870 + Ju 574 )

|

u+ Sz,

8] ) ()

< max {% (JJu+ S7 @ || + |ul + 57 2|

&l

)

1
+

)

1
+

1
u——=8"tag

V2

< max{Hu + 57ty

V2

I

|

—V2u + S_lxgH}

= F(u),

where the last line follows since #£% < max{z,y} for z,y > 0.
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Now taking b = a and squaring the norms, we wish to find the a that minimizes

5 d 1
fla) = max{2a2+a+§,2a2+a+§,4a2 —2a+1}

N

We show that for a = 3_3 ,

max { (V312 (V3= 1% (V3= 1)} = (V3 - 1)?

is minimal, and thus

3—V3 1-v3 V3-1
2 2 2
1-v3 | |3=v3| | Va1
2 2 V2

is an optimal dual for {z;}3_,. In fact, letting a = %ﬁ + €, the quadratics in f(a)

become

(\/§— 1)% + 4e — 2v/3€ + 2¢2

(V3 = 1)% + 4e — 4/3€ + 4¢?
In order for the maximum to be less than (v/3 — 1)2, both 4¢ — 2v/3¢ + 2¢2 and
4e —4+/3e+4€? must be negative simultaneously. But 4¢ — 2v/3¢+ 2¢2 is only negative
from € = 0 to € = 2 — /3, and 4e — 41/3€ + 4¢€2 is only negative from € = 1 — v/3 to
e = 0, and so the equations are never simultaneously negative. Therefore

5 5 1
minmax{2a2 +a-+ g,2a2~|—a+ §,4a2 — 2a + 4_1} = (\/5— 1)2.

The above argument implies that there is a only one optimal dual with the prop-

erty that a = b. By using the fact that |[(x,y)| = ||z - ||y]| if and only if 2 and y are
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linearly independent, we can easily derive that when a # b, we always have
|(u+ S wy) + (ul + S 2 || < |lu+ S ey || + |lut + S ],

(w4 S ag) + (uJr + ST @] < flu+ S || + HuT + S ||
and

1 1
1w — —=87"2s) + (u — —=57 as)l| < [lu -

V2 V2

1 1
5 aall + uf — =57

V2 V2

Thus the first inequality in the proof of “F(a) < F(u)” becomes a strict inequality
when a # b. Hence the optimal dual happens only when a = b, and therefore the
optimal dual is unique.

Example 4.3 (Frame with infinitely many optimal duals) Let H = R?, and

consider the frame {x;}3_, given by

This frame has infinitely many 1-erasure optimal dual frames.

First, note that

N =
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and so the standard dual, {S™'z;}, is given by

1 0 0
0 1 1
Therefore
0 1 0 1
max ||S™ z;|| - [|#]| = max -1, 5 1
7 ) )
1
= max S
79’ 2

Now, consider the alternate dual frame {S~'z; + h;}, where {h;} is given by

0 a —a
0 b —b
for arbitrary a,b. Thus ||S™ zy + Ay - [|z1]] = ||S™ 21| = 1, and so all choices of a, b

such that

1S 2y + holl - [|l22]| < 1 and [|S™ w3 + hal| - [|zs]| < 1

give optimal dual frames. So

-1 TP (et I L B

IS~ e 4 o - flaall = ||| | + 5
1 b

= — (1+0b)
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and similarly

1
1S~ @y + h| - [Jas]| = 3 a? + (1 —b)?

Therefore, all a, b such that
a? +(1+b)? <4anda®+ (1 -0)* <4

satisfy the condition, and so there are infinitely many optimal dual frames.
Since this example does not have a unique optimal dual for 1-erasure, it gives us
the opportunity to study a more interesting scenario for the 2-erasure case. We find,

for example, that there are infinitely many optimal dual frames even for 2-erasures.

Example Continued - Two Erasures

Let
1 0
V=10 3
0 3
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and consider (V1 + Z)DV, with ZV = 0, and VT the least square inverse. Then

1 %a

51 == (VT + Z)ELQV -
0 3(1+0b)
1 —%a

&=V +2)B 3V =
0 3(1—0b)
00

&= (VI +2)Ey3V =
01

The norm is the square root of the max eigenvalue of ££*, and so ||&|| = 1. Thus

the max over all 2-erasures is greater than or equal to 1. Choose a = b = 0 and then
&) = ||&]| = 1 as well.

From 1-erasure

1
5 a?+ (1+0)2<1

1
GV + (1= <1

so if @ = 0 and b is small enough, ||& || and ||&]] = 1. Therefore there are infinite
optimal duals even for 2-erasure.

We conclude the examples with pseudocode and a sample Mathematica code for
finding the optimal dual frame.

Pseudocode

(i) Calculate the frame operator, S, as a matrix.
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(ii) Calculate S~
(iii) Calculate the standard dual, {S™'z;}.

(iv) Solve the linear system of equations

i<€j, xz>uz = 0
=1

with j = 1,...,k for the u; in terms of paramters.

(v) Substitute the u; back into the norm expressions
1S~ 2y + ]
(vi) Determine the parameter(s) which give
muin max 1S~ 2 + wi|

Example Mathematica Code

The following code is an example of using Mathematica to find the u; which give the
minimum error. This particular example uses the uniform, non-Parseval frame from

above.

Minimizel[
{Max [Norm[{3/4, -1/4} + {ull, ul2}],
Norm[{-1/4, 3/4} + {u21, u22}],

Norm[{1/(2%Sqrt[2]), 1/(2*Sqrt[2])} + {u31, u32}]1],
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{(38/4)*{ull, u12} + (-1/4)*{u21, u22} +
(1/(2%8qrt [2]))*{u31, u32} == {0, 0},

(-1/4)*{ul1l, u12} + (3/4)*{u21, u22} +
(1/(2%8qrt[2]1))*{u31, u32} == {0, 0}}},

{uil, ui12, u21, u22, u3l, u32}]
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CHAPTER 5
DISCRETE GABOR FRAMES

5.1 Introduction

In 1946, D. Gabor proposed the short-time frequency analysis to expand a signal in
L*(R) with the building blocks {g,,»}, where

Gmn(T) = AmmbT g —na), m,n € Z
for fixed a,b € R. In many applications, such as signal processing, we require this
Gabor family to be either an orthonormal basis or a frame for L*(R), to provide for
decomposition and reconstruction of signals.

Although most of the research in this area focuses on the function space L*(R),
there are practical reasons for studying the discrete version of Gabor analysis on R"™.
Much work has been done for the R" case, and some work has been done for the ¢?(7Z)
case. See, for example, [9, 27]. However, very little is known about the ¢2(Z?) case.

Since this chapter considers infinite-dimensional Hilbert spaces, Section 5.2 begins
by reviewing the basic definitions and ideas about frames, noting in particular those
things which are specific to infinite dimensions. In Section 5.3, some results for the
(*(Z) case are given. Then, in Section 5.4, the results are generalized to the ¢*(Z%)
case, which has its own unique set of difficulties due to the complexity of the higher

dimension indices.
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5.2 Preliminaries

We begin by first recalling the basic definitions and notations about frames for infinite-
dimensional Hilbert spaces.
A frame for a separable (real or complex) Hilbert space H is a sequence {z;};cs

of H such that there exist two positive constants A, B > 0 with the property that

All][> <Y e, 2;)]* < Bllz|?
jedJ
holds for every z € H. The optimal constants (maximal for A and minimal for B)
are called frame bounds. A tight frame is a frame with equal frame bounds (A = B).
It is called a Parseval frame it A= B = 1. A uniform frame is a frame where all the
elements in the frame sequence have the same norm.
Unlike the finite-dimensional case, in the infinite-dimensional setting it is possible
for the right inequality not to hold. If the right inequality does hold for a sequence,
we call the sequence a Bessel sequence.

For a frame {z,};c7 of H, the associated analysis operator is the linear mapping

©: H — (*(J) defined by:
O(z) = > (z,z;)e;,

JET
where {e;} is the standard orthonormal basis for ¢2(7). The adjoint operator ©* of

O is given by

@*(Z cje;) = Z cr;.

jeT jeT
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If we let S = ©*0, then we have

Sz = Z(x,ycj)wj, x e H.
JjeJ
Thus S is a positive invertible bounded linear operator on H, which is called the

frame operator for {z;};e7. A direct calculation yields

r = Z(m, SV24,) 82y
JjeT

= Z<ZE, S_li')xj

JjeT
= Z(x,xﬁS’lxj (x € H).
JET
This tells us that {S~1/2z;},c is a Parseval frame, and {S~'z,},c7 is also a frame
for H. The frame {S™'x;};c7 is called the canonical (or standard) dual of {z;};c7.
Besides the canonical dual, there can also exist many (in fact, infinitely many)

frames {y;};es for H that yields a reconstruction formula for H:

r = Z(x,xj>yj, r e H.
JjeJ
A frame {y,};es satisfying the above reconstruction formula is called an alternate
dual frame or just simply called a dual frame for {z;};e7. The connection between
the canonical dual and the alternate duals is given by the following: {y,};es is an
alternate dual for {z;};c7 if and only if y; = S~'a; + h; for j € J, where {h;};cs
satisfies the condition

> (wa)h; =0 (Vx € H).
JjeJ
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and we say that {z;};es and {h;};cs are orthogonal sequences.

Orthogonal frames have applications in multiplexing, and we recall some of the
ideas used later. Let {(ﬁg-f) }jes be Parseval frames for Hilbert spaces Hy, £ = 1,... k.
We say that ({gbgl)}, {¢§2)}, e {¢§k)}> is a disjoint k-tuple if {qbg-l) ®...8 qbgk)} is a
frame for the orthogonal direct sum space Hy @ ... @ Hy, and is a strongly disjoint
k-tuple if it is a Parseval frame for the direct sum space. A strongly disjoint k-tuple

is also called a superframe of length k [1, 16, 19].

Lemma 5.1 (Han-Larson) {¢§1) D...d (bgk) }ieg is a superframe for H® ... & H
if and only if all of the following hold

(i) Each {¢§K)} is a Parseval frame for H.

(ii) {¢§-m)} and {¢§")} are orthogonal when m # n

5.3 Discrete Gabor Frames in (*(Z)

Next, we introduce some terms and ideas specific to Gabor frames on (*(Z).

Let H = (*(Z) with the inner product

(fg)= > flo)glx)

r=—00

For fixed N, K € N, an element g € (*(Z) generates a sequence of elements {gx, :
0<k<K-1,m € Z}, with k € N, via time translations and frequency modulations
given by

Grm(n) = eQm%ng(n —mN), néeZ
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If {gr.m} is a frame, it is called a Gabor (or Weyl-Heisenberg) frame. The element g
is referred to as the Gabor atom or Gabor (mother) wavelet. Then for any f € (*(Z),

there is a Gabor expansion

K-1
f = Z Z Ck,mYk,m

k=0 meZ

where ¢ ,,, are the Gabor coefficients.
We can consider an analysis operator © : (*(Z) — (*(G), where G is the group
Zy @ Z. Let {egm}kmyec be the standard orthonormal basis for ¢2(Zy ® Z). Then

for a given g € (%(Z), the analysis operator for the Gabor family is given by

Oyf = Z (fs Gkm) €km

(k,m)eG

As for general frames, the synthesis operator is the adjoint of the anaysis operator.

Thus, the frame operator is their composition, S = ©*0, and so it is given by

K-1
SF=>> "> {f, Grm)Irm

meZ k=0

If two Gabor atoms, g and h, generate dual frames, {gx,} and {hy,}, we will
say that (g, h) is a dual frame pair or simply dual pair.

For convenience, the translation and modulation operators are written, respec-
tively, as

T.f(n)=f(n—a) and E,f(n)=e"""f(n)

where a € Z, b € R.
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These operators are linear, since for fixed a, b

To(ag + Bf)(n) = (ag + Bf)(n — a)
=ag(n—a)+pf(n—a)

= aTag(n) =+ ﬁTaf(n)

and

Ey(ag + Bf)(n) = ™" (ag + Bf)(n)
— &627Tibng(n) 4 6627ribnf(n)

= akyg(n) + BEf(n)

and they are bounded (in fact, isometries), since

ITuf P =) ITuf (n)?

nel

= lfn—a)

nel

=Y If@F

NEL

= I£1

85



and

IEsfIP =) 1Buf (n)]?

nel

= 3 e () P

neL

= 1f()P

neL

= I£1

Moreover, both operators are unitary, since by reindexing

but also T_,T,f(n) =T_of(n —a) = f(n —a+a) = f(n), so that T =T,

Similarly, for the modulation operator

(Evf,g) =Y ™" f(n)g(n)

nez

= 3 Fe )

nez

=(f, E_9)

so that by = E_;, = E,;l.
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The following properties are immediate.

Property 5.1

T.Tvg(n) = Tarsg(n)

Property 5.2

EaEpg(n) = Eapg(n)

Property 5.3
EyT,g(n) = e%iabTaEbg(”)

Proof:

EyTog(n) = Eyg(n — a)
— 2mibn

eg(n —a)

— (627riabe—2ﬂ'iab) 627ribng(n _ a)

27riab€27rib(n—a)g(n o a)

=€
— eQﬂ'iabTa (627ribng(n))

— eQﬂ'iabTaEbg(n)

From these properties, we see that the discrete Gabor frame is a type of “group-
like” frame, where the group is given by Z/KZ x NZ. It is an example of what is

sometimes called a projective unitary representation.
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Using these operators, the Gabor family can now be written as

{Gom 0<k<K—1,meZ}={e%"gln—mN): 0< k<K —1,m € Z}

:{E%TmNg(n):nggK—l,mEZ}

where k € N.

In addition, the frame operator can now be written as

K-1
SF=> fs 9em)tm

meZ k=0

K-1
= Z Z<f, E%TmNg>E%TmNQ

meZ k=0

It is clear from the operator notation that every Gabor family is uniform, since

the operators are isometries, and so every vector has the same norm as the Gabor

atom. That is, Hgka2 = HgH2

Proposition 5.1 For a Gabor frame {gi,} with fived N, K, the frame operator S

commutes with the translation operators of the form T,n, where a € Z.
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Proof: For the translation operator

K-1
STaNf = Z Z<TaNf7 gk,m>gk,m

meZ k=0

— Z Z (fs T—anGrm) Ghm

meZ k=0

K-1
= TaNT—aN Z Z<f7 T—aNgk,m>gk,m

meZ k=0

K-1
= dLgN Z Z<f; T—aNgk:,m>T—aNgk,m

meZ k=0

K-1
= LagN Z Z<fa T—aNE%TmNg>T—aNE%TmNg

meZ k=0

K-1
.k -k
=Tay D D (e w O NEL T oy Tng)e % TV EL T oy Tong
meZ k=0
K-1

—omiE (a L (a
— faN Z Z e 2T N)<fv E§TmN—aNg>62 < N)E%TmN—aNg
meZ k=0

K-1
= lanN Z Z<f7 E%T(m—a)Ng>E%T(m—a)Ng

meZ k=0

K—1
= 1lgN Z Z<f, E%TmN@E%TmNg

meZ k=0

K-1
= lan Z Z<f, o) ki

meZ k=0

= aNSf

The following is an example of a Parseval frame.

Example 5.1 Let {e;}icz be the standard orthonormal basis for (*(Z). The family
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{gem :0< k< K-—1meZ}, withg= \/Lk(eo + ...+ en_1) is a Parseval frame if
K> N.

Proof: The g vector is of the form

11 1
0,0, ——, ——, ..., ——.0,0,...

N coordinates

(

)

First, note that since the vector g is of length N, translations by integer multiples of

N do not overlap. That is, (gk,m, gk,;) = 0 for all j # m. So consider the spaces
M,, = span{T,,ne;} X!

Then (*(Z) = @ M,,,. Therefore, it is enough to show that for any fixed m, { gk,m}i:ol

meZ
is a Parseval frame for M,,. So consider My, with {gro} = {e2™kmg(n)}. This space

is isomorphic to CV, and {g o} is the Parseval frame generated by the K-th roots of
unity provided that K > N.
]

The following is well known, the so-called density condition.

Proposition 5.2 There exists an element g € (*(Z) such that {gxm : 0 < k <

K —1,m € Z} is a frame for (*(Z) if and only if % < 1, with equality only for a

basis.

We require the following lemma

Lemma 5.2 If {gxm} and {hym} are Parseval frames for (*(Z), then ||g||* = || h|*.
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Proof:

K-1
lgl> => > g )|
meZ k=0
K-1
=> > g, ExTuwh)|®
meZ k=0
K-1
g
= D e RNE L Tog )P
meZ k=0
K-1
= |<g—k,—m7 h>|2
meZ k=0
= [|A]”

]
Remark: Since {gi,} with g = \/L?(eo + ...+ en—1) was shown to be a Parseval

frame, it follows that every Parseval frame {hy,,} for (2(Z) has ||h[* = £.

5.3.1 Characterization of Tight Gabor Frames and Dual Frames

Theorem 5.1 Let g,h € (*(Z). Then (g,h) is a dual pair if and only if

Z g(n —mN)h(n —mN — jK) = %5073-

meZ

forj €Z andn=20,1,...,N — 1.
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Proof: Let &,n € (*(Z) be of finite length. Then

S S G o) = 37 STUE By Tog) (B Touch, )

meZ k=0 meZ k=0

:ZZ (Zg e2mizen n—mN) (ZeQﬂiﬁjh(j—mN)@

meZ k=0 \n€eZ JEZL

=Y Z S emn(i)e™ kU g(n — mN)h(j — mN)

meZ k=0 n,j€Z

= &) Z( e "> (n — mN)h(j — mN)

n,j€Z meZ \ k=0

where changing the order of summation is justified by £, n of finite length. Now, (g, h)

is a dual pair if and only if this sum equals

= &mm(n)

neL

In other words, if and only if

K-1
2 ( <>> gn—mN)h(j = mN) = 5,
k=0

Note that ZK Le2mig(=n) = [ if Jj —n € KZ and 0 otherwise, so this holds if and
only if

Z g(n —mN)h(n+ (K —mN) = %5”

mEZ

holds for all ¢ € Z, as required.

Corollary 5.1 Let g € (*(Z). Then {grm} is an A-tight frame for (*(Z) if and only
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i A
Z gin—mN)g(n —mN — jK) = an’j
MmeZ

forjeZ andn=20,1,...,N — 1.

Proof: This follows from Theorem 5.1 and the fact that {gx.,} is an A-tight frame
for ¢*(Z) if and only if (g, %g) is a dual pair.
"

Let G be a subgroup of Z. We say that a set D tiles Z by G if {G+m : m € D} is
a disjoint partition of Z (in this case D is also called a complete digital set for Z/G).

If (G+m)N(G+n)=0for m,n € D,m # n, then we say that D packs Z by G.

Corollary 5.2 Let A = {iy,...ir} be an index set, and g = \/L?(ei1 +...4+e€;,). Then
{Gr.m} is a Parseval frame for (*(Z) if and only if A tiles Z by NZ and packs by KZ.
In particular, if K € NZ(N < K), then {gx.m} s a Parseval frame for (*(Z) if and
only if A tiles Z by NZ.

Proof: From Corollary 5.1, {gs.m} is a Parseval frame for ¢?(Z) if and only if

%5%. = ZGZg(n —mN)g(n —mN — jK)
:%Z (Zedn—mN—iQ) <Zeo(n—mN—is—jK)>
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For 7 =0

1 1 , ’
E:EZ (Zeo(n—m]\f—zs))

meZ \s=1

1= Z:Z (Zeo(n —mN — 23)>

s=1

which holds if and only if A tiles Z by NZ.
For j #0

meZ \s=1 s=1

OZ%Z (Zeo(n—mN—is)> <Zeg(n—mN—is—jK)>

which holds if and only if A packs Z by KZ.
]

Corollary 5.2 gives an alternate proof for Example 5.1.

5.3.2 Orthogonal Gabor Frames and Gabor Super-Frames

We say that two Bessel sequences are orthogonal if the range spaces of their respective
analysis operators are orthogonal. This can be shown to be equivalent to the condition
030, = 0. If the sequences are also frames we call them orthogonal frames.

Note that if Gabor atoms h and v generate two dual frames for g, then u = h —v
generates a Gabor sequence which is orthogonal (strongly disjoint) with {gx .. }. The

following characterizes the orthogonality of Gabor Bessel sequences.

Proposition 5.3 Let {gim} and {ug.} be Bessel sequences. Then they are orthog-
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onal if and only if

Zg(n—mN)u(n—mN—jK) =0

meZ

forjeZ andn=20,1,...,N — 1.

Proof: Let £, € (?(Z) be of finite length. Then, as in the proof of Theorem 5.1

SN 6t ) = 3 £ Y (Z <>) g0 —mNJulj — m)

mEZ k=0 n,jez meZ \ k=0

Now, (g, u) is an orthogonal pair if and only if

> (Z_ <>> gln—mN)u(j —mN) =0

MEZ k=0

Note that 35" e2miic(=n) = K if j —n € KZ and 0 otherwise, so this holds if and
only if
Zg(n —mN)u(n+{K —mN) =0

meZ

holds for all ¢ € Z, as required.
]
Remark: If this holds for all j, then in particular it holds for j = 0. And so,

summing over n gives the proof of the following corollary.
Corollary 5.3 If{gkm} and {ug.} are orthogonal Bessel sequences, then (g,u) = 0.

Note that in general (g, u) = 0 does not imply that (g, u) is an orthogonal pair. For

example

Example 5.2 Consider the standard orthonormal basis vectors ey and ey . Clearly
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(eo,ex) =0, but forn =0, j=—1

Z eo(n —mN)eg(n —mN — jK) = Z eo(—mN)ex(—mN + K)

MEZ meEZ

=1

Since it equals 1 when m = 0 and 0 otherwise. Therefore the condition of Proposi-
tion 5.3 is not satisfied, and so (eg, ex) do not form an orthogonal pair.
Alternate Proof of Proposition 5.3 for Frames

In the case when {gx,} and {uy,} are frames (as opposed to just Bessel sequences),

the following variation of Proposition 5.3 can be proven using Theorem 5.1.

Proposition 5.4 The pair (g,u) generate orthogonal frames if and only if

Zg(n—mN)u(n—mN—jK) =0

meZ

forj€Z andn=0,1,...,N — 1.

Y

Proof: From the characterization of dual pairs, if (g, S g + u) is a dual pair

by = 3 gln = mN) (ST + u)ln — N — )
=" gn—mN)[S~g(n —mN = jK) + u(n — mN — jK)]
_ Zg(n—mN)S_lg(n_mN_jK) + Zg(n—mN)u(n—mN—jK)
- %%JJFZQ(”—T”N)“(”_mN_jK)

meZ
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This implies that

Zg(n—mN)u(n—mN—jK) =0

mez
foryjeZandn=20,1,...,N — 1.
]

The following result gives a useful method for applying the orthogonality charac-

terization.

Corollary 5.4 Let g = xa, and h = xp, with Ay, Ao C Z. If Ay and Ay are KZ-

translation disjoint, then {gkm} and {him} are orthogonal.

Proof: Applying Proposition 5.3, (g, h) are an orthogonal pair if and only if
> X (= mN)xa,(n —mN — jK) =0
meZ

forj € Zand n=0,1,..., N — 1. The left side can only be nonzero if n — mN € A;
and n — mN — jK € Ay simultaneously. In other words, for some j, n — mN €
AN (Ay+ jK). But if A; and Ay are KZ-translation disjoint, Ay N (Ay + jK) = ()
for all j, and so the left side is always 0 and the equality holds.

]

The existence of Gabor super-frames is established in the following
Theorem 5.2 The following are equivalent

(i) There exists a Gabor super-frame of length L

(ZZ) I7d S i
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Proof: For (i) = (ii), let h =g, & ... @ gr be a Gabor super-frame of length

L. Then ||2]|* < 1, and since each {(g;)kn} is a Parseval frame for (*(Z), | g;[|* = %

for all 7, by Lemma 5.2. Thus

IR]* = ZngH2 L- —<1

Therefore, % <

I

For (it) = (i), let &£ <1, so that NL < K.

~{0,...,N—1}
As=1{N,....2N — 1}

Ap={(L-1)N,....NL}

Let ¢; = xa,. Since A; and A; are KZ-translation disjoint for i # j, {(gi)k.m} and
{(gj)k,m} are orthogonal by Corollary 5.4. In addition, each A; tiles by NZ and packs
by KZ, so that {(g;)k.m} is a Parseval frame for ¢?(Z). Therefore, by Lemma 5.1,
g1 D ... ® gr is a Gabor super-frame of length L.

Moreover, g1 ®. . .6 gy is an orthonormal Gabor super-frame only if equality holds,
NL =K or % =1.
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5.4 Discrete Gabor Frames in (*(Z?)

We now consider the Hilbert space ¢2(Z%), the space of square-summable sequences

indexed by integer vectors of length d, with inner product

(f,9)=">_ fm)g(n)
nezd
Let G be a subgroup of Z¢. We say that a set D tiles Z¢ by G if {G +m : m € D} is
a disjoint partition of Z? (in this case D is also called a complete digit set for Z¢/G).
If (G+m)N(G+n)=0form,n € D,m # n, then we say that D packs Z¢ by G.
Given fixed integer matrices A, B € Myy4(Z) with B invertible, let Q = {k;, ko, ..., k}
be a complete digit set of B*Z% in Z¢. For a Gabor atom g € (*(Z%), the Gabor se-

quence {gim : k € Q,m € Z%} is given by

gk,m(n) _ 627ri(k,B*1n>g(n . Am), ne Zd

We begin with a characterization for dual frames, as in Theorem 5.1, but we
require some basic lemmas on the nature of modulation in higher dimensions.

The first lemma shows that modulation values only depend on the B*Z-tile.

Lemma 5.3 Modulation is well-defined for the quotient group Z¢/B*Z%. That is if
x,y € k;+ B*Z% for some k; € Q a B*Z%-tile, then ¢* B~ ') — o2rily.B™n) [y fyep

they both equal e2™i(ki-B~'n)
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Proof: Let x = k; + B*v and y = k; + B*w for some k; € ). Then

e2m’(x,B*1n> _ eQﬂ'i(kﬁ-B*v,B’ln)

. . —1 - * —1
_ €2T”<k“B n) 62771(3 v,B7'n)
I ;
— e27rz(k%,B n) eZm(v,n)
_ _2mi{k;,B"'n)
=e i . (1)
1 .
_ 627rz(k%,B n) 627m(w,n>

_ e27ri<ki+B*w,B_1n)

_ 627ri<y,B_1n>

u
Also, we require the following lemma which generalizes the behavior of the roots of

unity.

Lemma 5.4 If Q is a B*Z%-tile of Z°

] ifn € BZ?

E /‘627ri<k,B*1n> _

keQ 0 otherwise

Proof: Let k; € € be arbitrary. Then

627rz'<ki,B_1n> (2 :e2m'(k,B_1n)> _ 2 :e2m'(ki+k,B_1n)

keQ keQ

_ E 627rz'(E,B*1n)

keQ
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So either 3", ., 2™ B ) = op e2mitkBTIn) = 1 But 2mik:B7'n) = 1 if and only
if (k;, B~'n) € Z. And since k; was arbitrary, we have B~!'n € Z4, or equivalently,
n € BZ<.

]

Now we are ready to prove the dual frame characterization for ¢2(Z%).

Theorem 5.3 Let g, h € (*(Z%). Then (g,h) is a dual pair if and only if

1
2]

Z g(n — Am)h(n — Am — Bj) =

meZ4

00,

forj €74 and n € Z2 (in fact, n in any AZ-tile is enough,).

Proof: Let &,n € (2(Z¢) be of finite length. Then

S 36 ) ()
— ZZ<Z£ )e2milk.BTn) n—Am> Zezka — Am)n()

meZd keQ) \neZzd jezd

= > "> gmn)eriteF i g(n — Am)h(j — Am)

mecZ4 keQ n jezd

> cmmnG) Y. (Z e2m<k73‘10—“)>> g(n — Am)h(j — Am)

n,jeza mecZd \ke2

where changing the order of summation is justified by £, n of finite length. Now, (g, h)

is a dual pair if and only if this sum equals

=Y &m)n(n)

nezd
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In other words, if and only if

meZd \keQ
From Lemma 5.4, 3, ., €?™®&B70-0) = Q| if j — n € BZ? and 0 otherwise, so this

holds if and only if

_ 1
Z g(n — Am)h(n + Bl — Am) = @6075

mecZa

holds for all £ € Z<, as required. .
u

The characterization of tight frames follows immediately

Corollary 5.5 Let g € (*(Z%). Then {gim} is a A\-tight frame for (*(Z?) if and only

of
Z g(n— Am)g(n — Am — Bj) = i501j

mecZ4 |Q|

forj € Z* and n € Z°.

Proof: This follows from Theorem 5.3 and the fact that {gixm} is a A-tight frame for
(3(2%) if and only if (g, 1g) is a dual pair.
u

The following corollary is one application of this characterization formula.

Corollary 5.6 Let A = {ij,...ir} be an index set, and g = \/ﬁ(eil + ... +e,).
Then {gx.m} is a Parseval frame for (*(Z%) if and only if A tiles Z¢ by AZ® and packs

by BZ¢.
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Proof: From Corollary 5.5, {gim} is a Parseval frame for ¢?(Z?) if and only if

1 :
s = > g(n— Am)g(n — Am — Bj)
mezd
]Q| Z (Z eo(n — Am — 1s)> (Z eo(n — Am — iy — Bj))
mecZd \is€A is€EA
Forj=0

(Z eo(n — Am — 1S)>

is€EA

ﬁ ymz

meZzd

=y (zeo<n—Am—is>)2

meZd \is€A

which holds if and only if A tiles Z¢ by AZ?.
For j#0

IQI 2

meZ4

(Zeo n—Am—15> <Zeo(n—Am—is—Bj)>

is€EA is€A

which holds if and only if A packs Z¢ by BZ.
]

Next, we prove the corresponding characterization for orthogonal Bessel sequences in

2(Z4).

Proposition 5.5 Let {gxm} and {uxm} be Bessel sequences. Then they are orthog-

onal if and only if

Z g(n— Am)u(n — Am — Bj) =0

mezd
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forj € Z* and n € Z°.

Proof: Let &,n € (2(Z%) be of finite length. Then, as in the proof of Theorem 5.3

DD (6 gem) (haeams 1)

LY i Y (z e2ﬂ<k’3*<j—n>>) S = i — Am)

n,jezd mecZd \keQ

Now, (g, u) is an orthogonal pair if and only if

S (e ) ) o
n,jeZd mezZd \keQ
From Lemma 5.4, 3, _, €?™®&B70-1) = Q| if j — n € BZ? and 0 otherwise, so this
holds if and only if
Z g(n— Am)u(n + Bl — Am) =0

meZzd
holds for all ¢ € Z¢, as required.
]
Another corollary, which will be useful in proving Theorem 5.6, relates an or-
thogonal pair of Gabor sequences generated by characteristic functions to the tiling

properties of their index sets.

Corollary 5.7 Let g = xa, and h = xa, with Ay, Ay C Z4. If Ay and Ay are BZ4-

translation disjoint, then {gxm} and {hxm} are orthogonal.
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Proof: Applying Proposition 5.5, (g, h) are an orthogonal pair if and only if

Z XA, (n— Am)yp,(n — Am — Bj) =0

mezd
for j € Z? and n € Z? The left side can only be nonzero if n — Am € A; and
n—Am— Bj € A, simultaneously. In other words, for some j, n—Am € A;N(Ay+ Bj).
But if A; and A, are BZ%translation disjoint, A; N (As + Bj) = 0 for all j, and so the
left side is always 0 and the equality holds.
]

We require the following lemma, a generalization of Lemma 5.2

Lemma 5.5 If{g1,...,g.} and {h,..., hx} both generate Parseval frames for (*(Z%),

then
L N
Do llgall? =Y lInslP
i=1 Jj=1
Proof:
L L N
2ol =222 > D Mg (hiem)
i=1 i=1 j=1 keQ mezd
N L
=30 ) D) DA RN
j=1 i=1 keQ mezd
N
=3Il
j=1
|

We now turn to Theorem 5.6, the density condition for Gabor super-frames in

(%(Z%). This theorem provides for the existence of Gabor super-frames and Parseval
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frames based on the determinants of the integer matrices A and B.

The density condition will follow from the tiling and packing results above. For one
dimension, the tiling of Z by aZ and bZ is not very complicated. In higher dimensions,
however, a bit more work is required and before we can prove this theorem, we need
to generalize some results concerning common representatives for cosets and prove
Theorem 5.4.

It is well known that if an abelian group G has two subgroups of finite index,
H, K, then they have a common set of representatives for their cosets if and only if
|G/H| = |G/K|. See, for example, [28]. We require something more general, for the
case when |G/H| > |G/K].

Consider subgroup K + H of G, and let |G/(K + H)| = N. Then

G=Jd+ K+ H)

i=1

Lemma 5.6 Vi,j < N, the number of cosets of K contained in d; + K + H and

d; + K + H are the same.

Proof: Let {a,, + K | 1 < m <t} be all of the cosets of K contained in d; + K + H.

Then, for every m

(dj —d;) +(am + K) Cdj —d; +di + K + H

—d;+K+H

Note that each pair of cosets (d; —d;) + (a,, + K) and (d; — d;) + (a, + K) are disjoint
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for a,, # a,, since if x € [(d; — d;) + (an, + K)| N [(d; — d;) + (@, + K)]

x:di—dj%—am%—kl:di—dj+an+k2
am—an:kQ—kl

Ay — Ay, € K

Thus the number of cosets of K contained in d; + K + H is greater than or equal to
the number of cosets of K contained in d; + K + H. Applying the same argument
with d; and d; reversed shows that the number of cosets of K contained in d; + K + H
and d; + K + H are equal.

]

The same argument with H instead of K gives

Lemma 5.7 Vi,j < N, the number of cosets of H contained in d; + K + H and

d; + K + H are the same.

Lemma 5.8 Any coset g1 + K contained in d; + H + K has non-empty intersection

with any coset go + H contained in d; + H + K.

Proof: For some hg, g1 + K = d; + hg + K, and for some kg, go + H = d; + ko + H.
The element d; + kg + hg is contained in both cosets.
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Theorem 5.4 Assumen = |G/K| > L|G/H| = Lm. Then there exists

911,912, - - -, 91m

921,922, - - -, 92m

9r1,9L2, - - -, 9Lm

such that {gs, ..., gim} tiles G by H and {g11, -+, G1m, 921, - > G2my -+ GL1s - - - » GLm }
packs by K.

Proof: Since there are n cosets of K, and each d; + K + H contains the same number
of them for 1 <7 < N, then each d; + K + H contains % cosets of K. Similarly, each
di+ K+ H contains T cosets of H. Since n > Lm, + > L. Let K, ..., K;» be the
cosets of K contained in d;+ K+ H and Hj, ... ,Hi% be the cosets of H contained in
d; + K + H. By Lemma 5.8, any coset of K and coset of H contained in d; + K + H

have non-empty intersection, so for all 1 < j < % choose

1
CLZ(]-) c Kij N Hij

2

a) € Kijan-1ym N Hy
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Now, relabel the representatives as

Il
C=
—

S
=z
sg/—\
zz 2
——

{911, gi12, - - ;glm}

<.
I
—

Il
C=
—
S
78
sgm
zz
——

{921, g22, ... ,g2m}

-
I
—

N
L L
{9r1, 902, grm} = U {%(1), e ﬂE%)}
i=1

It remains to show that each {g;1,..., ¢} tiles G by H and {g;;} packs by K. But
the ag»’) each represent one of Lm of the n different cosets of K, so they pack by K
(p)

(and tile if equality holds). In addition, for each fixed 1 < p < L, every a;; represents

one of the m different cosets of H, and so they tile by H.
]

We are now ready to prove the density condition.
Theorem 5.5 The following are equivalent:
(1) There exists a Gabor frame {gxm} for fired A, B
(i) |det(AB~Y)| <1

Proof: For (i) = (ii), let A = {iy,...,ir} be a fixed AZ%tile, where L = | det A.
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Define

1

= —eil
N /| det B|
1
= —ei
g V]det B *

Since A tiles Z4 by AZ4,

L
7' = o (i, + AZY)

n=1

Let H; = {€ € (*(Z%) | supp(€) C (i; + AZ%)}. Then
P(ZHY=H o H,® ... Hy,

Now, each {(g;)x.m} is a Parseval frame for H;, since for any £ € H;

2

2 1 2mi(k,B~'n
Z Z (€ (95)kem)|” = Z Z Z 5(“)@6 e, i, 1 Am (1)

keQ mezd keQ mezZd nezd
2

1
_gé /] det B

1
=3 gyl
keQ

= [I€1I”

Thus, {gi,...,9.} generates a Parseval frame for ¢*(Z%). Since {gxm} is a Parseval
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frame, ||g]|* < 1, and so applying Lemma 5.5

| det A|
lgl* = > llgill?
i=1

| det A|
1

- ;; | det B

= |det(AB™Y)|

Therefore, | det(AB™!)| < 1.

For (i1) = (i), suppose |det(AB™!)| < 1. Then |det(A)| < |det(B)|. Thus
|Z?/AZ¢| < |Z?/BZ%. By Theorem 5.4, there exists a set of representatives A which
tiles Z? by AZ? and packs by BZ“. Therefore, by Corollary 5.6, there exists a Gabor
frame.

"
In fact, the above theorem is a special case of the following more general density

condition for Gabor super-frames, by letting L = 1.
Theorem 5.6 The following are equivalent
(i) There exists a Gabor super-frame of length L for ¢*(Z%)
(ii) | det(AB)| < L

Proof: For (i) = (i), suppose {(g1)km ® ... ® (9r)km | k € Q,m € AZ} is a
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Parseval frame for (*(Z%) & ... @ (*(Z%). Then

lgn®...®grl| <1

L
> llall <1
i=1

L-|det(AB™H)| <1

since each {(g;)km} is a Parseval frame for (2(Z?). Therefore, |det(AB™)| < 1.

For (ii) = (i), suppose |det(AB~')| < 4. Then L|det(A)| < |det(B)|.
Thus L|Z%/AZ¢%| < |Z?)BZ%. By Theorem 5.4, there exists L sets of representatives
{Ay,..., AL} with A; = {ij1,...,1j et 4}, each of which tiles Z? by AZ? and packs
by BZ<. Therefore, by Corollary 5.6, there exists L Parseval frames for £2(Z%), with
Gabor atoms ¢; = \/ﬁXAr Since A; and A; are BZAtranslation disjoint for
any ¢, 7, Corollary 5.7 implies {(gi)x.m} and {(g;)x,m} are orthogonal. Therefore, by
Lemma 5.1, g1 & ... & g1 is a Gabor super-frame of length L.

Moreover, g1 ®. . .6 gy is an orthonormal Gabor super-frame only if equality holds.

Finally, we outline a proof which generalizes the so-called tight dual theorem to

(%(Z9) (see [17]).
Theorem 5.7 The following are equivalent

(i) For every Gabor frame {gxm} with lower frame bound greater than 1, there

exists a Parseval Gabor frame {hxm} such that (g,h) is a dual pair

(ii) |det(AB™1)| <

1
2
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Proof: For (i) = (i), let {gk.m} be a Gabor frame with frame operator S and

lower frame bound > 1. By assumption, there is a Parseval frame {hy ,} with

||S Is=10
(g,h) a dual pair. Let ¢ = h—S~'g. Then (g, ¢) form an orthogonal pair. The frame
operator for {¢xm} is ©504 = I — S, which is invertible, so that {¢m} is also a
frame. Therefore, there are two orthogonal, Parseval frames, and so | det(AB™1)| < 1.

For (ii) = (i), let {gx.m} be a Gabor frame with frame operator S and lower

frame bound =7 > 1. From Lemma 3.7 in [17], there exists a Parseval frame {hx m}

IIS

such that (g, h) is an orthogonal pair. Since ||[S™!|| < 1, [ —S~! is a positive operator,
and so consider ¢ = S~'g + /I — S—1h. First, note that v/I — S—! commutes with
the modulation and translation operators. Also, (g,+/I — S~'h) form an orthogonal

pair, since

ZZ (VI =57 W)icm) Giom = ZZ (VI =S~ f, hicm) Gem = 0

keQ mezd keQ mezd

Thus (g, ¢) form a dual pair. It remains to show that {¢x m} is a Parseval frame.

Yo o tem)Pem = > > (ST g+ VT =S Th)em) (ST g + VI = S h)iem

KEQ mezd ke mezd
-1 (Z Z (f, (5_19)k,m>9k,m>
keQ mezd
+0+0+ ) > (f (VI =S h)em) (VT = 5 h)icm
keQ mezd
=S+ (I —87Y)f

= f

Therefore, {gxm} has a Parseval dual frame.
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CHAPTER 6
FUTURE WORK

6.1 Further Research

The results of this work lead naturally to more questions.

First, optimal dual frames for 2 or more erasures need further study in those cases
when the optinal dual frame is not unique. However, they are difficult to calculate
using the operator norm. One proposed approach would be to calculate optimal duals
with respect to a different metric of the error operator, for example, the trace norm,
tr(TT*)'/2.

Optimal dual frames also need further study in the infinite-dimensional case, for
example, the discrete Gabor case. Also, a more in-depth problem would be the study
of infinitely-many erasures.

The discrete Gabor case is one example of a projective unitary representation.
Further study can be made of projective unitary representation frames in general.

Recently several researchers have been working on the Gabor frame theory for
subspaces, and this theory can be studied in the (2(Z?) case.

In addition to these questions, the following two sections discuss some other prob-

lems in the area of frames.
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6.2 Using the Lowdin Orthogonalization to Generate

Parseval Frames

In [7], the authors give a generalization of the Gram-Schmidt orthogonalization which
can be applied to a sequence of vectors to compute a Parseval frame for the subspace
generated by the sequence, while preserving redundancy in the case of linearly depen-
dent vectors. This procedure reduces to Gram-Schmidt orthogonalization if applied
to a sequence of linearly independent vectors.

Another orthogonalization procedure, the Lowdin orthogonalization also yields
Parseval frames in those instances when the vectors are linearly dependent.

Let {v;}¥_, be a sequence on the Hilbert space C*, with k > n. Then the synthesis

operator of {v;} is the n x k matrix

0" = [Ul Vy ... Uk]

and rank(©*) = r < n. By the singular value decomposition, U, V' unitary and ¥
diagonal so that
e*=UxV"

In particular, there is a “reduced SVD” so that ¥ contains only nonzero elements
on the diagonal (since n < k, V may not be unitary, though it will have orthogonal

columns), and then

@*:: C[ » vm

nxr rxrrxk
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The Lowdin orthogonalization is given by

L*:=UV*

Note that the adjoint notation is used for L to keep consistent with the notation for
synthesis operators. The first result shows that if {v;}*_; is a frame this matrix is the

synthesis operator of a Parseval frame.

Theorem 6.1 If {v;}}_ | is a frame for C", the columns of the matriz L* form a

Parseval frame.

Proof: From the sizes of U and V, L* is an n X k matrix, and

L*L = (UV*)(UV*)*
— UVVU
— UU

=1

so that the associated frame operator is the identity. Therefore, the columns form a
Parseval frame. Note that U is unitary if rank(L*) = r = n, which is the case if {v;}
is a frame.

u

Moreover, this frame is the same as {S~/2v;}.

Theorem 6.2 The Parseval frame given by the columns of L* is the same as the

Parseval frame given by {S™?v;}.
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Proof:

L= 57Per = uvr — (670) /2o
= UV — (USVVE U V2UBV)
=UV* — (USPU*)V2(USV)
=UV* — (US'U)(UEVY)
=UV* = (UV")

=0

Therefore, L* = S~Y/20*.
n
There is still work to be done in the case when {v;}¥_, is not a frame, and

rank(L*)=1r < n.

6.3 Mutually Unbiased Parseval Frames

Let H be a Hilbert space of dimension d. Then two sets of vectors {u; }&, and {v;}%,

are called mutually unbiased bases (MUBs), if they satisfy
(i) {w;} and {v;} are both orthonormal bases for H.
(ii) [(us,vj)* = % for every 4, j.

This naturally extends to the case for more than two sets of vectors, and finding the
number of MUBs which exist for a given dimension is an active area of research.
Parseval frames share many of the nice properties of orthonormal bases, and so

this naturally leads to the generalization of MUBs to mutually unbiased Parseval
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frames

Definition 6.1 Two sequences of vectors {w;}!, and {v;}™, withn,m > d are called

mutually unbiased Parseval frames (MUPFs), if they satisfy
(i) {u;} and {v;} are both Parseval frames for H.
(ii) |(ui,v;)|* = ¢ (a constant), for everyi,j.

The existence of such objects follows immediately from MUBs, since every MUB is
also a MUPF.
It is known that in some dimensions of R? no MUBs exist, see, for example, [4].

This leads to the following question

Question 1 Do there exist MUPFs which are not MUBs, and, if so, can we find

MUPFs in dimensions where no MUBs exist?
We can find some necessary conditions for MUPFs.

Theorem 6.3 If {u;}!, and {v;}*, are MUPF's with n,m > d, then each one is a

d

uniform Parseval frame. Moreover, the constant ¢ must be ¢ = [(u;, v;)|* = ==

Proof: For any 1 <i<n

I* [ (s, v3)

M

|| i

<
Il
-

[
Fﬂs

<.
Il
—

I
S
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Thus {u;} is a uniform Parseval frame, and a similar argument with « and v inter-

changed gives that {v;} is also a uniform Parseval frame, only with ||v;||* = nc.
For the moreover part, it is well known that for a uniform Parseval frame of length

k, every vector in the frame has norm \/%. Therefore, since {u;}? ; is uniform

d

— = ||lw]|* = mec

n

and so ¢ = %

n

u

Note that for the orthonormal basis case, n = m = d, and then this simplifies to the
_ 1

usual ¢ = 5.

The first example, while somewhat trivial, shows that it is possible to have MUPFs
which are not MUBs.

Example 6.1 Let {v;}!_, be the columns of

1 1
o |z ¥ —w ¥
! 1 1
0 % 0 -5
and {w;}{_, be the columns of
L L 1 1
o — |2 2 2 2
v 11 1, _1;
2 T2 3t T3t

These are both Parseval frames for C*, with ©30, = I and ©%0,, = I. Moreover,

w2 = & for all i, j.

119



The next example shows that it is possible for the frames to be of different lengths.

Example 6.2 Let {v;}2_, be the columns of

2 1 1

OF — 3 NG V6
0 4 1

V2 V2

and {w;}2_, be the columns of

These are both Parseval frames for C?, with ©30, = I and ©:0,, = I. Moreover,

o w2 = & for ail'ij.
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