You are here

RESEARCH IN HIGH PERFORMANCE AND LOW POWER COMPUTER SYSTEMS FOR DATA-INTENSIVE ENVIRONMENT

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
The evolution of computer science and engineering is always motivated by the requirements for better performance, power efficiency, security, user interface (UI), etc. The first two factors are potential tradeoffs: better performance usually requires better hardware, e.g., the CPUs with larger number of transistors, the disks with higher rotation speed; however, the increasing number of transistors on the single die or chip reveals super-linear growth in CPU power consumption, and the change in disk rotation speed has a quadratic effect on disk power consumption. We propose three new systematic approaches, Transactional RAID, data-affinity-aware data placement DAFA and Modeless power management, to tackle the performance problem in Database systems, large scale clusters or cloud platforms, and the power management problem in Chip Multi Processors, respectively. The first design, Transactional RAID (TRAID), is motivated by the fact that in recent years, more storage system applications have employed transaction processing techniques to ensure data integrity and consistency. In transaction processing systems(TPS), log is a kind of redundancy to ensure transaction ACID (atomicity, consistency, isolation, durability) properties and data recoverability. Furthermore, high reliable storage systems, such as redundant array of inexpensive disks (RAID), are widely used as the underlying storage system for Databases to guarantee system reliability and availability with high I/O performance. However, the Databases and storage systems tend to implement their independent fault tolerant mechanisms from their own perspectives and thereby leading to potential high overhead. We observe the overlapped redundancies between the TPS and RAID systems, and propose a novel reliable storage architecture called Transactional RAID (TRAID). TRAID deduplicates this overlap by only logging one compact version (XOR results) of recovery references for the updating data. It minimizes the amount of log content as well as the log flushing overhead, thereby boosts the overall transaction processing performance. At the same time, TRAID guarantees comparable RAID reliability, the same recovery correctness and ACID semantics of traditional transactional processing systems. On the other hand, the emerging myriad data intensive applications place a demand for high-performance computing resources with massive storage. Academia and industry pioneers have been developing big data parallel computing frameworks and large-scale distributed file systems (DFS) widely used to facilitate the high-performance runs of data-intensive applications, such as bio-informatics, astronomy, and high-energy physics. Our recent work reported that data distribution in DFS can significantly affect the efficiency of data processing and hence the overall application performance. This is especially true for those with sophisticated access patterns. For example, Yahoo's Hadoop clusters employs a random data placement strategy for load balance and simplicity. This allows the MapReduce programs to access all the data (without or not distinguishing interest locality) at full parallelism. Our work focuses on Hadoop systems. We observed that the data distribution is one of the most important factors that affect the parallel programming performance. However, the default Hadoop adopts random data distribution strategy, which does not consider the data semantics, specifically, data affinity. We propose a Data-Affinity-Aware (DAFA) data placement scheme to address the above problem. DAFA builds a history data access graph to exploit the data affinity. According to the data affinity, DAFA re-organizes data to maximize the parallelism of the affinitive data, and also subjective to the overall load balance. This enables DAFA to realize the maximum number of map tasks with data-locality. Besides the system performance, power consumption is another important concern of current computer systems. In the U.S. alone, the energy used by servers which could be saved comes to 3.17 million tons of carbon dioxide, or 580,678 cars. However, the goals of high performance and low energy consumption are at odds with each other. An ideal power management strategy should be able to dynamically respond to the change (either linear or nonlinear, or non-model) of workloads and system configuration without violating the performance requirement. We propose a novel power management scheme called MAR (modeless, adaptive, rule-based) in multiprocessor systems to minimize the CPU power consumption under performance constraints. By using richer feedback factors, e.g. the I/O wait, MAR is able to accurately describe the relationships among core frequencies, performance and power consumption. We adopt a modeless control model to reduce the complexity of system modeling. MAR is designed for CMP (Chip Multi Processor) systems by employing multi-input/multi-output (MIMO) theory and per-core level DVFS (Dynamic Voltage and Frequency Scaling).
Title: RESEARCH IN HIGH PERFORMANCE AND LOW POWER COMPUTER SYSTEMS FOR DATA-INTENSIVE ENVIRONMENT.
51 views
23 downloads
Name(s): Shang, pengju, Author
Wang, Jun, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The evolution of computer science and engineering is always motivated by the requirements for better performance, power efficiency, security, user interface (UI), etc. The first two factors are potential tradeoffs: better performance usually requires better hardware, e.g., the CPUs with larger number of transistors, the disks with higher rotation speed; however, the increasing number of transistors on the single die or chip reveals super-linear growth in CPU power consumption, and the change in disk rotation speed has a quadratic effect on disk power consumption. We propose three new systematic approaches, Transactional RAID, data-affinity-aware data placement DAFA and Modeless power management, to tackle the performance problem in Database systems, large scale clusters or cloud platforms, and the power management problem in Chip Multi Processors, respectively. The first design, Transactional RAID (TRAID), is motivated by the fact that in recent years, more storage system applications have employed transaction processing techniques to ensure data integrity and consistency. In transaction processing systems(TPS), log is a kind of redundancy to ensure transaction ACID (atomicity, consistency, isolation, durability) properties and data recoverability. Furthermore, high reliable storage systems, such as redundant array of inexpensive disks (RAID), are widely used as the underlying storage system for Databases to guarantee system reliability and availability with high I/O performance. However, the Databases and storage systems tend to implement their independent fault tolerant mechanisms from their own perspectives and thereby leading to potential high overhead. We observe the overlapped redundancies between the TPS and RAID systems, and propose a novel reliable storage architecture called Transactional RAID (TRAID). TRAID deduplicates this overlap by only logging one compact version (XOR results) of recovery references for the updating data. It minimizes the amount of log content as well as the log flushing overhead, thereby boosts the overall transaction processing performance. At the same time, TRAID guarantees comparable RAID reliability, the same recovery correctness and ACID semantics of traditional transactional processing systems. On the other hand, the emerging myriad data intensive applications place a demand for high-performance computing resources with massive storage. Academia and industry pioneers have been developing big data parallel computing frameworks and large-scale distributed file systems (DFS) widely used to facilitate the high-performance runs of data-intensive applications, such as bio-informatics, astronomy, and high-energy physics. Our recent work reported that data distribution in DFS can significantly affect the efficiency of data processing and hence the overall application performance. This is especially true for those with sophisticated access patterns. For example, Yahoo's Hadoop clusters employs a random data placement strategy for load balance and simplicity. This allows the MapReduce programs to access all the data (without or not distinguishing interest locality) at full parallelism. Our work focuses on Hadoop systems. We observed that the data distribution is one of the most important factors that affect the parallel programming performance. However, the default Hadoop adopts random data distribution strategy, which does not consider the data semantics, specifically, data affinity. We propose a Data-Affinity-Aware (DAFA) data placement scheme to address the above problem. DAFA builds a history data access graph to exploit the data affinity. According to the data affinity, DAFA re-organizes data to maximize the parallelism of the affinitive data, and also subjective to the overall load balance. This enables DAFA to realize the maximum number of map tasks with data-locality. Besides the system performance, power consumption is another important concern of current computer systems. In the U.S. alone, the energy used by servers which could be saved comes to 3.17 million tons of carbon dioxide, or 580,678 cars. However, the goals of high performance and low energy consumption are at odds with each other. An ideal power management strategy should be able to dynamically respond to the change (either linear or nonlinear, or non-model) of workloads and system configuration without violating the performance requirement. We propose a novel power management scheme called MAR (modeless, adaptive, rule-based) in multiprocessor systems to minimize the CPU power consumption under performance constraints. By using richer feedback factors, e.g. the I/O wait, MAR is able to accurately describe the relationships among core frequencies, performance and power consumption. We adopt a modeless control model to reduce the complexity of system modeling. MAR is designed for CMP (Chip Multi Processor) systems by employing multi-input/multi-output (MIMO) theory and per-core level DVFS (Dynamic Voltage and Frequency Scaling).
Identifier: CFE0003910 (IID), ucf:48749 (fedora)
Note(s): 2011-08-01
Ph.D.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Doctorate
This record was generated from author submitted information.
Subject(s): Transaction Processing
RAID
Chip Multi-processor
CPU power management
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003910
Restrictions on Access: public
Host Institution: UCF

In Collections