You are here

ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE IN BRIDGE DECKAPPLICATIONS

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
The research presented in this dissertation focuses on the material characterization of ultrahigh performance fiber reinforced concrete (UHP-FRC) at both the microscopic and macroscopic scales. The macroscopic mechanical properties of this material are highly related to the orientation of the steel fibers distributed within the matrix. However, the fiber orientation distribution has been confirmed to be anisotropic based on the flow-casting process. The orientation factor and probability density function (PDF) of the crossing fiber (fibers crossing a cutting plane) orientation was obtained based on theoretical derivations and numerical simulations with respect to different levels of anisotropy and cut planes oriented arbitrarily in space. The level of anisotropy can be calibrated based on image analysis on cut sections from hardened UHP-FRC prisms. Simplified equations provide a framework to predict the mechanical properties based on a single fiber-matrix interaction rule selected from existing theoretical models. Along with the investigation of the impacts from different curing methods and available post-cracking models, a versatile parameterized uniaxial stress-strain constitutive model was developed and calibrated. The constitutive model was implemented in a finite element analysis software program, and the program was utilized in the preliminary design of moveable bridge deck panels made of passively reinforced UHP-FRC. This deck system was among the several alternatives to replace the problematic steel grid decks currently in use. Based on experimental investigations of the deck panels, failure occurred largely in shear rather than flexure during bending tests. However, this shear failure is not abrupt and usually involves large deformation, large sectional rotation, and wide shear cracks before loss of load-carrying capacity. This particular shear failure mode observed was further investigated numerically and experimentally. Three-dimensional FEM models with the ability to reflect the interaction between rebar and concrete were created in a commercial FEM software to investigate the load transfer mechanism before and after bond failure. Small-scale passively reinforced prisms were tested to verify the conclusions drawn from simulation results. In an effort to improve the original design, several shear-strengthened deck panels were tested and evaluated for effectiveness. Finally, methods and equations to predict the ultimate shear capacity were calibrated. A two-dimensional frame element based complete moveable bridge finite element model was built for observation of bridge system performance. The model contained the option to substitute any available deck system based on a subset of pre-calibrated parameters specific to each deck type. These alternative deck systems include an aluminum bridge deck system and a glass fiber reinforced plastic (GFRP) deck system. All three alternatives and the original steel grid deck system were evaluated based on the global responses of the moveable bridge, and the advantages and disadvantages of adopting the UHP-FRC deck system are quantified.
Title: ULTRA-HIGH PERFORMANCE FIBER REINFORCED CONCRETE IN BRIDGE DECKAPPLICATIONS.
19 views
10 downloads
Name(s): Xia, Jun, Author
Mackie, Kevin, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The research presented in this dissertation focuses on the material characterization of ultrahigh performance fiber reinforced concrete (UHP-FRC) at both the microscopic and macroscopic scales. The macroscopic mechanical properties of this material are highly related to the orientation of the steel fibers distributed within the matrix. However, the fiber orientation distribution has been confirmed to be anisotropic based on the flow-casting process. The orientation factor and probability density function (PDF) of the crossing fiber (fibers crossing a cutting plane) orientation was obtained based on theoretical derivations and numerical simulations with respect to different levels of anisotropy and cut planes oriented arbitrarily in space. The level of anisotropy can be calibrated based on image analysis on cut sections from hardened UHP-FRC prisms. Simplified equations provide a framework to predict the mechanical properties based on a single fiber-matrix interaction rule selected from existing theoretical models. Along with the investigation of the impacts from different curing methods and available post-cracking models, a versatile parameterized uniaxial stress-strain constitutive model was developed and calibrated. The constitutive model was implemented in a finite element analysis software program, and the program was utilized in the preliminary design of moveable bridge deck panels made of passively reinforced UHP-FRC. This deck system was among the several alternatives to replace the problematic steel grid decks currently in use. Based on experimental investigations of the deck panels, failure occurred largely in shear rather than flexure during bending tests. However, this shear failure is not abrupt and usually involves large deformation, large sectional rotation, and wide shear cracks before loss of load-carrying capacity. This particular shear failure mode observed was further investigated numerically and experimentally. Three-dimensional FEM models with the ability to reflect the interaction between rebar and concrete were created in a commercial FEM software to investigate the load transfer mechanism before and after bond failure. Small-scale passively reinforced prisms were tested to verify the conclusions drawn from simulation results. In an effort to improve the original design, several shear-strengthened deck panels were tested and evaluated for effectiveness. Finally, methods and equations to predict the ultimate shear capacity were calibrated. A two-dimensional frame element based complete moveable bridge finite element model was built for observation of bridge system performance. The model contained the option to substitute any available deck system based on a subset of pre-calibrated parameters specific to each deck type. These alternative deck systems include an aluminum bridge deck system and a glass fiber reinforced plastic (GFRP) deck system. All three alternatives and the original steel grid deck system were evaluated based on the global responses of the moveable bridge, and the advantages and disadvantages of adopting the UHP-FRC deck system are quantified.
Identifier: CFE0003721 (IID), ucf:48803 (fedora)
Note(s): 2011-05-01
Ph.D.
Engineering and Computer Science, Department of Civil and Environmental Engineering
Masters
This record was generated from author submitted information.
Subject(s): fiber reinforced concrete
moveable bridge
finite element analysis
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003721
Restrictions on Access: public
Host Institution: UCF

In Collections