You are here

LOW NOISE, NARROW OPTICAL LINEWIDTH SEMICONDUCTOR-BASED OPTICAL COMB SOURCE AND LOW NOISE RF SIGNAL GENERATION

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106, which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The mode-locked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively mode-locked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results.
Title: LOW NOISE, NARROW OPTICAL LINEWIDTH SEMICONDUCTOR-BASED OPTICAL COMB SOURCE AND LOW NOISE RF SIGNAL GENERATION.
43 views
25 downloads
Name(s): Ozdur, Ibrahim, Author
Delfyett, Peter, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106, which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The mode-locked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively mode-locked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results.
Identifier: CFE0003573 (IID), ucf:48917 (fedora)
Note(s): 2011-05-01
Ph.D.
Optics and Photonics, College of Optics and Photonics
Masters
This record was generated from author submitted information.
Subject(s): mode-locked laser
PDH
etalon
opto-electronic oscillator
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003573
Restrictions on Access: public
Host Institution: UCF

In Collections