You are here

VALIDATION OF WIDEBAND OCEAN EMISSIVITY RADIATIVE TRANSFER MODEL

Download pdf | Full Screen View

Date Issued:
2010
Abstract/Description:
Radiative Transfer Models (RTM) have many applications in the satellite microwave remote sensing field, such as the retrieval of oceanic and atmospheric environmental parameters, including surface wind vectors and sea surface temperatures, integrated water vapor, cloud liquid, and precipitation. A key component of the ocean RTM is the emissivity model used to determine the brightness temperature (Tb) at the oceanÂÂ's surface. A new wideband ocean emissivity RTM developed by the Central Florida Remote Sensing Laboratory (CFRSL) calculates ocean emissivity over a wide range of frequencies, incidence angles, sea surface temperatures (SST), and wind speed. This thesis presents the validation of this CFRSL model using independent WindSat Tb measurements collocated with Global Data Assimilation System (GDAS) Numerical weather model environmental parameters for frequencies between 6.8 to 37 GHz and wind speeds between 0 – 20 m/s over the July 2005 – June 2006 year. In addition, the CFRSL emissivity model is validated using WindSat derived ocean wind speeds and SST that are contained in the Environmental Data Record (EDR) and combined with the GDAS environmental parameters. Finally, the validation includes comparisons to the well-established XCAL ocean emissivity RTM. The focus of this validation and comparison is to assess performance of the emissivity model results with respect to a wide range of frequency and wind speeds but limited to a narrow range of incidence angles between approximately 50° - 55°.
Title: VALIDATION OF WIDEBAND OCEAN EMISSIVITY RADIATIVE TRANSFER MODEL.
32 views
10 downloads
Name(s): Crofton, Sonya, Author
Jones, Linwood, Committee Chair
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2010
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Radiative Transfer Models (RTM) have many applications in the satellite microwave remote sensing field, such as the retrieval of oceanic and atmospheric environmental parameters, including surface wind vectors and sea surface temperatures, integrated water vapor, cloud liquid, and precipitation. A key component of the ocean RTM is the emissivity model used to determine the brightness temperature (Tb) at the oceanÂÂ's surface. A new wideband ocean emissivity RTM developed by the Central Florida Remote Sensing Laboratory (CFRSL) calculates ocean emissivity over a wide range of frequencies, incidence angles, sea surface temperatures (SST), and wind speed. This thesis presents the validation of this CFRSL model using independent WindSat Tb measurements collocated with Global Data Assimilation System (GDAS) Numerical weather model environmental parameters for frequencies between 6.8 to 37 GHz and wind speeds between 0 – 20 m/s over the July 2005 – June 2006 year. In addition, the CFRSL emissivity model is validated using WindSat derived ocean wind speeds and SST that are contained in the Environmental Data Record (EDR) and combined with the GDAS environmental parameters. Finally, the validation includes comparisons to the well-established XCAL ocean emissivity RTM. The focus of this validation and comparison is to assess performance of the emissivity model results with respect to a wide range of frequency and wind speeds but limited to a narrow range of incidence angles between approximately 50° - 55°.
Identifier: CFE0003533 (IID), ucf:48946 (fedora)
Note(s): 2010-12-01
M.S.E.E.
Engineering and Computer Science, School of Electrical Engineering and Computer Science
Masters
This record was generated from author submitted information.
Subject(s): ocean surface emissivity
radiative transfer model validation
microwave radiometry
WindSat
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0003533
Restrictions on Access: public
Host Institution: UCF

In Collections