You are here

Convective Heat Transfer in Nanofluids

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
In recent years, the study of fluid flow with nanoparticles in base fluids has attracted the attention of several researchers due to its various applications to science and engineering problems. Recent investigations on convective heat transfer in nanofluids indicate that the suspended nanoparticles markedly change the transport properties and thereby the heat transfer characteristics. Convection in saturated porous media with nanofluids is also an area of growing interest. In this thesis, we study the effects of radiation on the heat and mass transfer characteristics of nanofluid flows over solid surfaces. In Chapter 2, an investigation is made into the effects of radiation on mixed convection over a wedge embedded in a saturated porous medium with nanofluids, while in Chapter 3 results are presented for the effects of radiation on convection heat transfer about a cone embedded in a saturated porous medium with nanofluids. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and the results are found to be in very good agreement. The numerical results for the velocity, temperature, volume fraction, the local Nusselt number and the Sherwood number are presented graphically. The salient features of the results are analyzed and discussed for several sets of values of the pertinent parameters. Also, the effects of the Rosseland diffusion and the Brownian motion are discussed.
Title: Convective Heat Transfer in Nanofluids.
29 views
12 downloads
Name(s): Schraudner, Steven, Author
Vajravelu, Kuppalapalle, Committee Chair
Mohapatra, Ram, Committee Member
Rollins, David, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In recent years, the study of fluid flow with nanoparticles in base fluids has attracted the attention of several researchers due to its various applications to science and engineering problems. Recent investigations on convective heat transfer in nanofluids indicate that the suspended nanoparticles markedly change the transport properties and thereby the heat transfer characteristics. Convection in saturated porous media with nanofluids is also an area of growing interest. In this thesis, we study the effects of radiation on the heat and mass transfer characteristics of nanofluid flows over solid surfaces. In Chapter 2, an investigation is made into the effects of radiation on mixed convection over a wedge embedded in a saturated porous medium with nanofluids, while in Chapter 3 results are presented for the effects of radiation on convection heat transfer about a cone embedded in a saturated porous medium with nanofluids. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and the results are found to be in very good agreement. The numerical results for the velocity, temperature, volume fraction, the local Nusselt number and the Sherwood number are presented graphically. The salient features of the results are analyzed and discussed for several sets of values of the pertinent parameters. Also, the effects of the Rosseland diffusion and the Brownian motion are discussed.
Identifier: CFE0004214 (IID), ucf:49024 (fedora)
Note(s): 2012-05-01
M.S.
Sciences, Mathematics
Masters
This record was generated from author submitted information.
Subject(s): convection -- nanofluids -- heat transfer -- radiation -- cone -- wedge
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004214
Restrictions on Access: public 2012-05-15
Host Institution: UCF

In Collections