You are here

Modeling of Thermal Properties of Fiber Glass Polyester Resin Composite Under Thermal Degradation Condition

Download pdf | Full Screen View

Date Issued:
2011
Abstract/Description:
Composites, though used in a variety of applications from chairs and office supplies to structures of U.S. Navy ships and aircrafts, are not all designed to hold up to extreme heat flux and high temperature. Fiber-reinforced polymeric composites (FRPC) have been proven to provide the much needed physical and mechanical properties under fire exposure. FRPC notable features are its combination of high specific tensile strength, low weight, along with good corrosion and fatigue resistance. However FRPC are susceptible to thermal degradation and decomposition, which yields flammable gas, and are thus highly combustible. This property restricts polymeric material usage.This study developed a numerical model that simulated the degradation rate and temperature profiles of a fiber-reinforced polyester resin composite exposed to a constant heat flux and hydrocarbon fire in a cone calorimeter. A numerical model is an essential tool because it gives the composite designer the ability to predict results in a time and cost efficient manner. The goal of this thesis is to develop a numerical model to simulate a zonal-layer polyester resin and fiber-glass mat composite and then validate the model with experimental results from a cone calorimeter. By inputting the thermal properties of the layered composite of alternating polymer and polymer-infused glass fiber mat layers, the numerical model is one step closer to representing the experimental data from the cone calorimeter test. The final results are achieved through adding a simulated heat flux from the pilot ignition of the degraded gas of the polyester resin. The results can be coupled into a mechanical model, which may be separately constructed for future study on the mechanical strength of composites under fire conditions.
Title: Modeling of Thermal Properties of Fiber Glass Polyester Resin Composite Under Thermal Degradation Condition.
49 views
20 downloads
Name(s): Tsoi, Marvin, Author
Chen, Ruey-Hung, Committee Chair
Gou, Jihua, Committee CoChair
Ilie, Marcel, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2011
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Composites, though used in a variety of applications from chairs and office supplies to structures of U.S. Navy ships and aircrafts, are not all designed to hold up to extreme heat flux and high temperature. Fiber-reinforced polymeric composites (FRPC) have been proven to provide the much needed physical and mechanical properties under fire exposure. FRPC notable features are its combination of high specific tensile strength, low weight, along with good corrosion and fatigue resistance. However FRPC are susceptible to thermal degradation and decomposition, which yields flammable gas, and are thus highly combustible. This property restricts polymeric material usage.This study developed a numerical model that simulated the degradation rate and temperature profiles of a fiber-reinforced polyester resin composite exposed to a constant heat flux and hydrocarbon fire in a cone calorimeter. A numerical model is an essential tool because it gives the composite designer the ability to predict results in a time and cost efficient manner. The goal of this thesis is to develop a numerical model to simulate a zonal-layer polyester resin and fiber-glass mat composite and then validate the model with experimental results from a cone calorimeter. By inputting the thermal properties of the layered composite of alternating polymer and polymer-infused glass fiber mat layers, the numerical model is one step closer to representing the experimental data from the cone calorimeter test. The final results are achieved through adding a simulated heat flux from the pilot ignition of the degraded gas of the polyester resin. The results can be coupled into a mechanical model, which may be separately constructed for future study on the mechanical strength of composites under fire conditions.
Identifier: CFE0004171 (IID), ucf:49076 (fedora)
Note(s): 2011-12-01
M.S.M.E.
Engineering and Computer Science, Mechanical, Materials and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): Numerical model -- thermal properties -- fiber glass -- polyester resin -- composite -- thermal degradation
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004171
Restrictions on Access: public 2011-12-15
Host Institution: UCF

In Collections