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ABSTRACT 

In recent decades, the wireless communication industry has attracted a great deal of 

research efforts to satisfy rigorous performance requirements and preserve high spectral 

efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless 

communications to develop high performance and high data rate systems. This has necessitated 

the need for applying efficient complex-valued signal processing techniques to highly-integrated, 

multi-standard receiver devices. 

In this dissertation, novel techniques for complex-valued digital signal enhancement are 

presented and analyzed for various applications in wireless communications.  

The first technique is a unified block processing approach to generate the complex-valued 

conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed 

algorithms exploit the concept of the complex conjugate gradients to find the orthogonal 

directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal 

direction, the presented algorithms employ the complex Taylor series expansion to calculate 

time-varying convergence factors tailored for the adaptive filter coefficients. The performance of 

the developed technique is tested in the applications of channel estimation, channel equalization, 

and adaptive array beamforming. Comparing with the state of the art methods, the proposed 

techniques demonstrate improved performance and exhibit desirable characteristics for practical 

use. 

The second complex-valued signal processing technique is a novel Optimal Block 

Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates 

for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex 
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Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at 

each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch 

effects in analog front-end. Simulation results indicate that comparing with the existing methods, 

OBA-C exhibits superior convergence speed while maintaining excellent accuracy.  

The third technique is regarding interference rejection in communication systems. The 

research on both LMS and Independent Component Analysis (ICA) based techniques continues 

to receive significant attention in the area of interference cancellation. The performance of the 

LMS and ICA based approaches is studied for signals with different probabilistic distributions. 

Our research indicates that the ICA-based approach works better for super-Gaussian signals, 

while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate 

choice of interference suppression algorithms can be made to satisfy the ever-increasing demand 

for better performance in modern receiver design. 
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CHAPTER 1 INTRODUCTION 

Since the end of the 20th century, wireless communication has become one of the most 

successful and profitable market in industry. Even during the late-2000s recession, the number of 

the wireless subscribers still grew steadily both within U.S. and worldwide. The International 

Telecommunication Union 1 reported that at the end of 2011, there were 6.0 billion mobile 

subscriptions [1], which is equivalent to 86.7 percent of the world population. That is a huge 

increase from 5.4 billion in 2010 and 4.7 billion mobile subscriptions in 2009. Table 1 shows 

more detailed statistics [1] from World Telecommunication Service at the end of 2011.  

The Portio Mobile Factbook 2012 [2] predicts that the number of worldwide mobile 

subscribers will reach 6.5 billion by the end of 2012, 6.9 billion by the end of 2013 and 8 billion 

by the end of 2016. This recent forecast indicates that there is still a steady growth during 2012 

to 2016 in the global wireless communication market, driven mainly by emerging market growth 

and a shift toward the next generation of mobile networks. This shift will offer consumers not 

only higher data rates and more efficient systems, but also broadband Internet access to support 

innovative multimedia services and applications.  

  

                                                 

1 The International Telecommunication Union (Union internationale des télécommunications, in French), previously 
the International Telegraph Union, is the specialized agency of the United Nations which is responsible for 
information and communication technologies. ITU coordinates the shared global use of the radio spectrum, 
promotes international cooperation in assigning satellite orbits, works to improve telecommunication infrastructure 
in the developing world and establishes worldwide standards. 
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Table 1 Global Telecom Indicators for the World Telecommunication Service in 2011 
 

 Global Developed 
nations 

Developing 
nations 

Asia & 
Pacific 

Europe The 
Americas 

Mobile cellular 
subscriptions 

(millions) 

 
5,981 

 
1,461 

 
4,520 

 
2,897 

 
741 

 
969 

 
Per 100 people 

 

 
86.7% 

 
117.8% 

 
78.8% 

 
73.9% 

 
119.5% 

 
103.3% 

Fixed telephone lines 
(millions) 

 

 
1,159 

 
494 

 
665 

 
511 

 
242 

 
268 

 
Per 100 people 

 

 
16.6% 

 
39.8% 

 
11.6% 

 
13.0% 

 
39.1% 

 
28.5% 

Active mobile broadband 
subscriptions  

(millions) 

 
1,186 

 
701 

 
484 

 
421 

 
336 

 
286 

 
Per 100 people 

 

 
17.0% 

 
56.5% 

 
8.5% 

 
10.7% 

 
54.1% 

 
30.5% 

Fixed broadband 
subscriptions 

(millions) 

 
591 

 
319 

 
272 

 
243 

 
160 

 
145 

 
per 100 people 

 

 
8.5% 

 
25.7% 

 
4.8% 

 
6.2% 

 
25.8% 

 
15.5% 

 

In order to keep up with this rapid growth of the wireless communication market, the 

design of wireless systems satisfying rigorous constraints and diversified specifications is 

becoming increasingly important. The past decade has seen a surge of research activities in this 

area. Research efforts concentrate on schemes that are capable of increasing the system capacity, 

providing reconfigurability/reprogrammability, and reducing the hardware complexity [3]–[6]. 

By the strong push towards flexible and software-configurable receiver structures, high-

performance signal processing techniques in the digital domain are highly desirable. As a result, 

it can reduce the size of the implementation and the cost of the Front-End (FE). As the 

computational power of Digital Signal Processor (DSP) is increasing rapidly, implementing radio 
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functionalities digitally is becoming more feasible, leading to the long-term transceiver design 

objective-Software Defined Radio (SDR). 

This chapter is organized as follows. 1.1 introduces different applications of complex 

signal processing in wireless communications. The concept of SDR is briefly reviewed in 1.2. 

Two challenges in wireless communications, channel fading and interference suppression are 

described in 1.3 and 1.4, respectively. 1.5 illustrates the motivation and scope of this dissertation, 

followed by the mathematical notation and preliminaries in 1.6. The organization of the 

dissertation is given in 1.7. 

1.1 Applications of Complex Signal Processing in Wireless Communications 

Low cost, low power dissipation and small size are important implementation 

requirements for wireless receiver design. The flexibility to support different types of waveforms 

and various air interface technologies of existing and emerging wireless systems is another 

important receiver design objective. The requirements for implementation on one side and the 

demand for flexibility on the other side often pose significant challenges. In this regard, the 

quadrature concept is frequently adopted due to its potential to support the development of new 

systems which can achieve these design objectives [7]–[8]. The understanding of the quadrature 

concept is often simplified by considering both the signal and the system transfer function as 

‘complex’ quantities. 

A complex signal is the combination of two real-valued independent components, the 

real/In-phase (I) and the imaginary/Quadrature-phase (Q) components. A complex system 

employs two independent channels to generate the I and Q components of the signal. Many high-
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bit-rate modulation schemes are based on complex signal concepts, such as Phase Shift Keying 

(PSK), Quadrature Amplitude Modulation (QAM), Orthogonal Frequency Division Multiplexing 

(OFDM), [9], [10]. 

The application of complex signal processing in wireless systems has blossomed in the 

past decade [11]–[23]. This is especially true for high-bit-rate standards, such as Wireless Local 

Area Network (WLAN) [11], and for highly-integrated multi-standard transceivers [12]–[13]. 

Employing complex signal processing in wireless communications can limit the use of narrow-

band fixed-coefficient filters at high frequencies (including Radio Frequency or RF, and high 

Intermediate Frequency or IF). This advantage leads to the development of new systems with 

highly integrated receivers using less power and requiring less physical space. 

1.1.1 Complex Filters 

Among various wireless applications of complex signal processing, complex filters are 

important and ubiquitous in modern wireless receiver design [14]–[17]. From an implementation 

point of view, cross-coupling between the real and imaginary signal paths is utilized to realize 

asymmetrical filters, which implies that the filter has complex coefficients. The realization of 

complex filters includes the basic operations of addition, multiplication, and the delay operator 

for digital filters or the integrator operator for analog filters. 

Traditionally, complex analog filters are used to perform complex signal processing in 

wireless transceivers [18]–[21]. However, the non-ideality of analog components causes all kinds 

of distortions, e.g., unexpected image signal aliasing into the desired signal band [22], [23]. 

Furthermore, analog filters do not permit a high degree of integration, which is crucial for the 
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development of modern wireless systems. In this regard, complex-valued filters implemented 

digitally have been developed and become essential in the design of highly-integrated multi-

standard wireless receivers.  

1.1.2 Low-IF and Zero-IF Quadrature Receivers 

In wireless receiver design, increased integration level with fewer external components is 

the trend to reduce product cost. This demand has led to the popularity of low-IF and zero-IF 

receiver structures. 

Signal

cos(ωRFt)

sin(ωRFt)

ADC

Preselection
Filter

ADC

DSP

+

+

sin(ωIFt)

cos(ωIFt)

cos(ωIFt)
 

Figure 1 Low-IF Receiver Architecture 

Low-IF architecture, shown in Fig. 1, is currently a popular architecture for designing 

highly-integrated wide-band wireless receivers [24], [25]. In a low-IF receiver, the RF signal is 

demodulated in two stages. The first stage employs two analog multipliers to translate the RF 

input signal down to a low-IF frequency. The second stage shifts the IF signal to baseband 

complex signal using four real-valued multipliers. Both stages can be implemented by analog 

components before the analog to digital conversion [26]. Alternatively, the analog to digital 

conversion can be done at the IF stage as shown in Fig. 1, and then the second frequency shift 
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can be realized in the digital domain. This digital demodulation alternative is always preferred 

for two reasons. First, this scheme implements the second complex modulation in the digital 

domain, and thus the imperfection can be minimized. Second, if the analog to digital sampling 

frequency is chosen properly, the second mix can be significantly simplified.  

Low-IF architecture is especially suitable for multi-standard receivers when the channel-

selection filter is realized using digital circuits after the Analog to Digital Converter (ADC). In 

this way, programmable digital devices can be applied to accommodate the requirements of 

different standards, so as to avoid rebuilding the analog circuits. The major drawback of low-IF 

architectures is image interference, but it can be significantly minimized by using digital filters, 

which will be mainly discussed in Chapter 6. 

Signal

cos(ωRFt)

sin(ωRFt)

ADC

Preselection
Filter

ADC

DSP

 

Figure 2 Zero-IF Receiver Architecture 

A zero-IF receiver [27], [28], shown in Fig. 2, is also known as direct-conversion receiver. 

As explained by its name, this architecture demodulates the incoming RF signal to a baseband 

signal using a Local Oscillator (LO) whose frequency is identical or very close to the signal’s 

carrier frequency. This is in contrast to the standard low-IF receiver, in which this step is 

accomplished after an initial conversion to an IF signal. 
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The simplification of performing a single frequency conversion reduces the circuit 

complexity. However, other issues arise. For example, in the original form, a zero-IF receiver is 

incapable to receive Amplitude Modulation (AM) and Frequency Modulation (FM) signals 

without implementing an elaborate Phase Locked Loop (PLL). Although there are technical 

challenges in the implementations of the zero-IF receiver, today’s advanced technology, SDR in 

particular, has revived the use of zero-IF receivers in various areas, including consumer 

electronic products. 

1.1.3 Beamforming 

In recent years, antenna array becomes a key component in various wireless applications, 

such as radar, sonar and cellular mobile communications [29]. It increases the detection range of 

radar and sonar systems, and improves the capacity of mobile communication systems. Modern 

antenna technology in conjunction with beamforming offers a promising solution to reduce 

interference levels and improve the system capacity. This is achieved by maximizing the signal 

reception from the desired direction, and suppressing the reception from other directions. 

Conventional beamformer uses a fixed set of weights to combine a sequence of the array signals 

with time delays. This scheme primarily uses the information regarding the sensor locations and 

the waveform directions. In contrast, adaptive beamformers combine this information with the 

properties of the received signals, to improve rejection of unwanted signals from other directions. 

The adaptive array beamforming can be considered as a spatial form of an adaptive filtering 

process. The output of the antenna elements is adapted so as to produce a desired radiation 

pattern which is optimized to receive the target signal from the desired direction. In this manner, 
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the spatial separation of different user signals is exploited to retrieve the desired signal from the 

interfering signals at the same transmission band. 

1.2 Software Defined Radio 

The development of programmable DSPs [30]–[31] has enabled signal processing 

operations (e.g., image rejection, channel equalization, signal estimation, and interference 

suppression) to be performed in the digital domain using adaptive techniques [32]–[35]. In this 

regard, SDR system has been developed. SDR is a radio communication system where 

components typically implemented in hardware are replaced by software executed on a computer 

or embedded computing devices [36]–[37]. Today’s rapidly evolving capabilities of digital 

electronics are making practical many operations that were once only theoretically feasible [38]. 

In order to achieve SDR, two primary tasks have to be accomplished. Firstly, the Analog-

to-Digital Converter or ADC (at the receiver side) and Digital-to-Analog Converter or DAC (at 

the transmitter side) have to be moved near the antenna, thus more signal processing tasks can be 

performed in digital domain. Secondly, delicate hardware needs to be replaced by DSPs. 

The main desirable feature of SDR is that, software controls and programs the transceiver 

devices to flexibly achieve the capability of reconfiguration. Furthermore, SDR supports 

multiple modes and multiple standards. Therefore, SDR is crucial in the development of 

cognitive radio, which is considered as a fully reconfigurable wireless transceiver capable to 

automatically adapt its communication parameters according to the network and user demands. 

In the long term, SDR is expected to become one of the dominant technologies in radio 

communication systems. 
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1.3 Fading Channels 

In most wireless communication channels, fading is caused by two major reasons. The 

first is the multipath propagation, which refers to multiple reflective paths from a transmitter to a 

receiver for a signal to travel. The second is shadowing, in which the wave propagation is 

affected by obstacles. Both of them cause fluctuations in the received signal’s amplitude, phase, 

and angle of arrival. These factors should be taken into account when describing the channel 

behavior or predicting the system performance.  

1.3.1 Slow vs. Fast Fading 

Channel fading can be categorized into two types: slow fading and fast fading. Before the 

definitions are given, an important term, coherence time is defined here. Coherence time is the 

minimum time required for the magnitude change of the channel to become uncorrelated from its 

previous value. 

Slow fading occurs when the coherence time of the channel is greater than the channel 

delay constraint. In this scenario, the amplitude and phase changes imposed by the channel can 

be considered roughly constant. In other words, the characteristics of the channel remain 

approximately the same over the period of use. Therefore, a slow fading channel is usually 

considered as a time-invariant fading channel. 

Fast fading arises when the coherence time of the channel is less than the delay constraint 

of the channel. In this scenario, the amplitude and phase change imposed by the channel varies 

considerably over the period of use. Therefore, a fast fading channel is usually considered as a 

time-variant fading channel. The time variation can be small-scale effect due to the multipath 



 10 

fading, or the larger-scale effect due to the path loss via distance attenuation as well as 

shadowing by obstacles. 

1.3.2 Flat vs. Frequency-selective Fading 

Channel fading can also be categorized into flat fading and frequency-selective fading. As 

the carrier frequency of a signal varies, the change in amplitude may be different. Coherence 

bandwidth is defined here as the statistical measurement of the frequency range over which two 

frequencies of a signal are likely to experience comparable or correlated amplitude fading. 

In flat fading, the coherence bandwidth of the channel is greater than the bandwidth of 

the signal. In this scenario, all frequency components of the signal experience the same fading 

effects. 

In frequency-selective fading, the coherence bandwidth of the channel is smaller than the 

bandwidth of the signal. In this scenario, different frequency components of the signal 

experience different fading parameters. Frequency-selective fading channel brings big challenges 

to the area of wireless communications. In this scenario, the signal energy associated with each 

symbol is spread out in time, which causes the adjacent transmitted symbols to interfere with 

each other. To satisfy the performance requirements, equalizers are often deployed to 

compensate for the effects of this intersymbol interference [39]. 

1.4 Interference in Wireless Communications 

In a telecommunication system, interference is any effect that distorts a signal as it travels 

between a transmitter and a receiver. In contrast to the wired communications where each 

transmitter-receiver pair can be considered as an isolated point-to-point link, wireless users 
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communicate over the air and thus there is inevitable interference. The interference can be 

between different user signals transmitted to a common receiver (e.g., uplink of a cellular 

system), between signals from the same transmitter to multiple receivers (e.g., downlink of a 

cellular system), or between different transmitter-receiver pairs (e.g., interference between users 

in different cells). In the following, three important types of interference are introduced–Co-

Channel Interference (CCI), Adjacent Channel Interference (ACI) and image interference. 

1.4.1 Co-Channel Interference 

Co-Channel Interference or CCI is the crosstalk from two different users occupying the 

same frequency band. In cellular communications, CCI is caused by the phenomenon of 

frequency reuse after certain geographical distance. When the cell size is decreased due to the 

increasingly hectic cell phone business, this problem will become more severe. Since CCI 

significantly affects the system capacity, a good suppression technology becomes critical. In 

practice, CCI is hardly attenuated by analog filters. 

1.4.2 Adjacent Channel Interference 

Adjacent Channel Interference or ACI is caused by extraneous power from a signal in an 

adjacent channel. ACI is typically caused by nonideal filtering in either the reference or 

interference channel, such as inadequate filtering of unwanted modulation products in FM 

systems, improper tuning, or poor frequency control. 
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1.4.3 Image Interference 

The problem of image interference arises from out-of-band users due to the adoption of 

IF stage as mentioned in 1.1.2. In low-IF receivers, after the frequency translation from the first 

down-conversion mixer, the unwanted image signal and wanted RF signal both lie in the IF band 

and cannot be distinguished. The image signal may have higher power than the desired signal 

and thus it can significantly degrade the system performance. Ideally, the image signal band can 

be totally attenuated in I/Q signal processing. However, perfect image rejection is realized only if 

the I and Q branches of such a system are completely matched (with equal amplitudes and a 

phase difference of 90), which is impossible in practical analog circuits [40]. Particularly, if the 

analog I/Q processing is applied to a wideband multichannel signal, the effect of the image 

interference becomes extremely severe. 

1.5 Motivation and Scope of the Dissertation 

This dissertation deals with two fundamental aspects, which cause challenging yet 

interesting problems in wireless communications [41]. The first is channel fading introduced in 

1.3, and the second is the interference discussed in 1.4. How to deal with channel fading and 

interference is essential to the design of wireless communication systems and will be the theme 

of this dissertation. 

The scope of this work is to investigate novel complex signal processing algorithms to 

enhance the signal after it is corrupted by the fading effects or interferences. This work 

concentrates on complex adaptive Finite Impose Response (FIR) filtering techniques. 
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To solve channel fading problems, the complex Least Mean Square (LMS) algorithm has 

been frequently applied in channel identification and equalization. However, the choice of the 

learning rate or convergence factor in the complex LMS method is made empirically, resulting in 

the inefficiency in utilizing the degrees of freedom of the adaptive system. In this research, 

attempts have been made to develop more efficient algorithms by using complex conjugate 

gradients. In addition, a time-varying step size is applied instead of the constant step size. 

Intuitively, greater values are chosen at the start point of the adaption to achieve rapid 

convergence. When the adaptation is approaching the solution, smaller values are chosen to 

minimize misadjustment. 

To suppress the interference in a wireless system, there are two typical ways. If the 

network loading is relatively low, incorporating interference measurements in resource 

management helps to provide interference avoidance. However, if the network loading is high, 

avoidance technique is no longer effective. Therefore, to maintain high level of Quality of 

Service (QoS), it is necessary to reduce interference after it has already occurred.  

To suppress CCI in an adaptive array beamforming application, LMS based algorithms 

can be employed. As mentioned before, the LMS technique is easy to implement but the 

performance is limited, especially when the power of the interference is comparatively large. To 

improve the performance, the proposed complex conjugate gradient block LMS techniques can 

also be applied in adaptive beamforming. 

Besides the LMS based methods, Independent Component Analysis (ICA) is recently 

applied to suppress CCI in a general receiver. In this dissertation, the effect of signals’ 

probabilistic distributions on the performance of both LMS and ICA based adaptive interference 
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canceling algorithms is studied. The conclusion is made that if the prior information of the 

signals’ probabilistic distributions is known, a proper choice can be made between the LMS and 

ICA algorithms to achieve better performance. 

The image interference is another important interference in wireless receivers. The image 

interference is unavoidable for practical quadrature receivers and can be frequency-dependent in 

nature. In this dissertation, a novel Optimal Block Adaptive algorithm based on the Circularity 

(OBA-C) is presented for frequency-dependent image interference suppression. The proposed 

OBA-C technique is based on the assumption that the received signal deviates from circularity in 

the presence of the image interference. The OBA-C method uses the complex Taylor series 

expansion to optimally update the adaptive filter coefficients at each iteration, until the 

circularity of the signal is restored. 

1.6 Mathematical Notations and Preliminaries 

To avoid the ambiguity of mathematical notations in the algorithm formulation, 

notational conventions are given in Table 2. In this dissertation, scalar variables appear in lower 

case, vectors in bold lower case, and matrices in bold upper case. 
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Table 2 Mathematical Notations 

j Square root of –1, 1−  

(.)T Transposition 

(.)H Conjugate Transposition 

(.)* Conjugation 

(.)-1 Inverse of a matrix 

(.)+ Pseudo inverse of a matrix or vector 

E{.} Expectation 

∗  Convolution 

I Identity matrix 

 

1.7 Organization of the Dissertation 

The dissertation is organized as follows. 

Chapter 2 develops the formulations of the Complex Block Conjugate based LMS (CBC-

LMS) and Complex Block Conjugate based LMS with Individual adaptation (CBCI-LMS). 

Chapter 3 applies the proposed CBCI-LMS and CBC-LMS algorithms to channel 

estimation and equalization. Besides, the implementation issues are discussed. 

Chapter 4 presents an adaptive array beamforming application employing the proposed 

CBCI-LMS and CBC-LMS methods. 

Chapter 5 proposes a novel non-data-aided block adaptive technique with optimal 

adaptations, OBA-C, to restore the circularity of a distorted complex signal. 
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Chapter 6 applies the proposed OBA-C technique to solve the frequency-dependent I/Q 

mismatch problem. 

Chapter 7 studies the effect of signals’ probabilistic distributions on performance of 

adaptive interference cancelling problem. 

Chapter 8 summarizes the contributions of the presented research and suggests future 

research directions. 
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CHAPTER 2 CONJUGATE GRADIENT BASED COMPLEX BLOCK 
LMS ALGORITHMS WITH OPTIMAL ADAPTATION 

The LMS algorithm has become a widely used adaptive digital filtering technique since 

the pioneering work of Bernard Widrow [42]–[45]. Various LMS based algorithms for adaptive 

digital FIR filters have been studied [43]–[53]. These algorithms can be categorized into two 

types: the sequential processing methods [43]-[49], and the block processing methods [50]–[53]. 

The sequential processing method calculates the output values sequentially from the preceding 

inputs, and thus it is a direct implementation of convolution or a difference equation. The Block 

LMS (BLMS) method calculates a block or a finite set of output values from a block of input 

samples. An important advantage of the block processing method is that it yields smooth 

convergence curve. Although the block method has higher computational complexity, it can 

achieve the same convergence speed as the sequential method by efficient use of parallel devices. 

In addition, block formulation lends itself to efficient implementation by employing the matrix 

inversion lemma [54] and transform methods [55]–[56]. Therefore, block processing algorithms 

are intensively applied to modern adaptive systems. Both the sequential and block processing 

LMS algorithms can be developed for complex signals and systems [57]–[59].  

The performance of the LMS method depends on a crucial factor, namely, the 

convergence factor or step size. Conventional LMS techniques apply a time-invariant step size 

which is the same for all the adaptive filter coefficients. It is difficult to choose a common 

convergence factor that guarantees the stability of the algorithm for all conditions [60]. Since the 

step size controls the speed, accuracy, and stability of the adaptive system, properly selecting the 
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step size is important. The complex LMS algorithm has this inherent limitation of the real-valued 

LMS method: the performance is dependent on the proper choice of the step size. 

The concept of using time-varying convergence factors has been investigated by several 

researchers [48]–[51], [61]–[64]. A widely used technique is the Normalized LMS (NLMS) 

method, which normalizes the step size by the signal power in either the time-domain [61], or the 

frequency-domain [62]. However, most of the previously proposed variable step size algorithms 

require a priori knowledge or estimates of the input signal power or the eigenvalues of the input 

autocorrelation matrix [61]–[64]. On the contrary, without any priori information, the 

Homogeneous Adaptive (HA), and Individual Adaptive (IA) methods [48] were proposed for 

sequential processing, while the Optimal Block Adaptive method (OBA), Optimal Block 

Adaptive method with Individual adaptation (OBAI) [50], were proposed for block processing. 

These optimal methods were extended to the complex domain in [49], [51]. 

The LMS based algorithms employ the steepest descent method, in which the update of 

the weight vector is proportional to the negative gradient. As a result, it always takes more than 

one step in the same direction, which causes the redundancy in adaptation and thus slows down 

the convergence. To improve the convergence performance, the Conjugate Gradient (CG) 

concept [65]–[68] can be applied. The main advantage of the CG is that it achieves rapid 

convergence by employing conjugate gradients instead of using the negative gradients as in the 

LMS method. This improvement is achieved at the expense of a relatively modest increase in the 

number of computations per iteration. This unique combination of convergence speed and 

computational complexity gives CG desirable properties for applications in numerous 

mathematical optimization problems. 
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In this chapter, a general formulation is given for developing two fast-converging 

complex block conjugate LMS adaptive algorithms, CBC-LMS and CBCI-LMS. The presented 

unified approach employs the concept of complex conjugate gradients and calculates time-

varying convergence factors at each iteration. The optimal step sizes are computed from the 

available input signals to adjust the adaptive filter coefficients without trial and error. The 

difference between these two methods is that CBC-LMS uses a common step size for all the 

adaptive filter coefficients while CBCI-LMS computes individual step size for each filter 

coefficient. The formulation shows that the CBCI-LMS algorithm achieves faster adaptation than 

CBC-LMS at the expense of increase in the number of computations per iteration. 

This chapter is organized as follows. The derivation of complex conjugate gradients is 

given in 2.1. In 2.2, the most general form of the algorithm, CBCI-LMS, is developed, which 

utilizes all the available degrees of freedom of the system. In 2.3, another class of algorithms, 

CBC-LMS is derived, which uses fewer computations with sacrifice in performance. In 2.4, the 

computational complexity of the proposed algorithms is analyzed, followed by the conclusion in 

2.5. 

2.1 Complex Conjugate Gradients 

In this section, the complex conjugate gradient directions are derived for the adaptive 

filter coefficients. In 2.1.1, the block implementation of the Complex LMS algorithm is briefly 

reviewed. In 2.1.2, the formulation of complex conjugate gradients is given. 

2.1.1 Complex BLMS 

In this subsection, the BLMS is developed in the complex domain as the Complex BLMS.  
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Table 3 Defined Variables 

k Iteration index 

l Sample index within a block 

N Number of the FIR filter coefficients 

L Block Size 

w (k) Filter coefficient vector at iteration index k, size N×1 

wn(k) The nth coefficient of w (k), Nn ≤≤1  

X(k) Filter input matrix at the time index k, size L × N 

xl(k) The lth column of XT(k), size N × 1 

x(k) Current input signal at the time index k 

y(k) Filter output vector at iteration index k, size N×1 

yl(k) The lth variable in y(k), Ll ≤≤1  

d(k) Desired signal vector at iteration index k, size N×1 

dl(k) The lth variable in d(k), Ll ≤≤1  

e(k) The error signal vector at iteration index k, size N×1 

el(k) The lth error signal at iteration index k, Ll ≤≤1  

µ Convergence factor of the Complex BLMS method 

 

Fig. 3 gives the block diagram of a complex adaptive FIR filter. All signals are assumed 

to be complex. The formulation starts by defining the variables in Table 3. 
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Figure 3 Adaptive FIR Filter 

As defined above, the weight vector w(k) is an N×1 vector, given by, 

T
N kwkwkwk )](),...(),([)( 21=w  (2.1) 

The FIR input vector )(klx  is also an N×1 vector, as follows, 

T
l Nlkxlkxlkxk )](),...2(),1([)( −+−+−+=x  (2.2) 

At the iteration index k, the lth FIR filter output yl(k), the lth desired signal dl(k), and the lth 

error signal el(k) are formulated as follows, respectively, 

)()()( kkky l
T

l xw=  (2.3) 

)1()( −+= lkdkdl  (2.4) 

)()()( kykdke lll −=  (2.5) 

In a block algorithm, e(k) can be written in a matrix-vector expression, given by, 

)()()()()()( kkkkkk wXdyde −=−=  (2.6) 

where the vectors and matrices are listed below, 

T
L kkkk )](),...(),([)( 21 xxxX =  (2.7) 

T
L kykykyk )](),...(),([)( 21=y  (2.8) 

T
L kdkdkdk )](),...(),([)( 21=d  (2.9) 
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T
L kekekek )](),...(),([)( 21=e  (2.10) 

The objective is to minimize the Mean Square Error (MSE) of the adaptation block by 

adjusting the filter coefficients at each iteration. The MSE function, )(MSE kf , is defined as, 

)()(1)*]()([)(MSE kk
L

kekeEkf H ee≈=  (2.11) 

In the block implementation of the Complex LMS, the real and imaginary components of 

the complex weight vector w, namely wR and wI respectively, are updated by the following 

equations, 

)()()1( RRR k-k = k gww ⋅+ µ  (2.12) 

)()()1( III k-k = k gww ⋅+ µ  (2.13) 

where μ is the fixed step size, and )(R kg  and )(I kg  are the gradients of the real and the 

imaginary components, which can be calculated respectively, as follows, 

)]()()()([1
)(
)()( *

R

MSE
R kkkk

Lk
kfk HT eXeX

w
g −−=

∂
∂

=  

)}()(2Re{ kk
L

H eX−=  (2.14) 

)]()()()([1
)(
)()( *

I

MSE
I kkjkkj

Lk
kfk HT eXeX

w
g +−=

∂
∂

=  

)}()(2{Im kk
L

j H eX⋅=  (2.15) 

Substituting (2.14) and (2.15) into (2.12) and (2.13), respectively, the following is 

obtained, 

)1()1()1( IR +⋅++=+ kjkk www  
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)()(2)( kk
L

k= H eXw µ
+  (2.16) 

Similar as in the real domain, the update of the complex weight vector can be formulated 

in terms of complex gradient vector g(k), as follows, 

)()()1( kkk gww ⋅−=+ µ  (2.17) 

From (2.16) and (2.17), g(k) can be computed as, 

)()(2
)(
)()( MSE kk

Lk
kfk H eX

w
g −≈

∂
∂

=  (2.18) 

The main drawback of the Complex BLMS is that the choice of the learning rate μ is 

made empirically, depending on the type of the application and the input signal. Moreover, a 

small step size results in slow convergence, and a large step size may cause unstable gradient 

descent, leading to divergence.  

2.1.2 Formulation of Complex Conjugate Gradients 

The CG principle [65] is a prominent method for solving unconstrained optimization 

problems such as energy minimization and adaptive filtering [66]–[68]. Compared to the two 

widely-used optimization approaches, the LMS method and the Newton’s method, the CG 

principle has its unique features. In comparison with the LMS method, CG achieves more rapid 

convergence by employing orthogonal search directions instead of using the steepest descent 

method [69]. In comparison with the Newton’s iteration approach which involves matrix 

inversion and approximation to the second-order derivative of the objective function, CG has 

lower computational complexity. This unique combination of convergence speed and 



 24 

computational complexity gives CG desirable properties for applications in numerous 

mathematical optimization problems. 

In implementation, CG picks a set of orthogonal search directions {q(0), q(1), … 

q(k), …}. When the performance function is the MSE defined in (2.11), which is a quadratic 

function of the weights, the performance surface is bowl-shaped. In this case, the adaptation will 

adjust the filter weights iteratively, searching for the bottom of the bowl. 

 

Figure 4 Performance Surface of MSE 
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Figure 5 CG Searching Directions 

Figs 4 and 5 illustrate this idea with an example of a 2×1 filter weight vector, w(k) = 

[w1(k), w2(k)]T. Fig. 4 shows the performance surface of MSE and Fig. 5 is the weight searching 

process. In Fig. 4, w(0) is the starting point and wopt is the searching destination, which is the 

optimal filter weight to yield the least MSE. As long as the searching directions q(k)’s are 

orthogonal with each other, and the step sizes α(k)’s are properly chosen, the second step can 

always achieve the optimal solution wopt, regardless of the coordinates of the starting point w(0) 

and the initial direction q(0). 

In general, w is updated as follows, 

)()()()1( kkkk qww α+=+  (2.19) 

The error err is updated as, 

)()()()1( kkkrrkrr qee α+=+  (2.20) 
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To find the optimal value of α(k), err(k+1) should be orthogonal to q(k), so that the 

searching process will never again step in the direction of q(k). In the real domain, the 

mathematical relation of orthogonality between q(k) and err(k+1) is expressed as qT(k)err(k+1) = 

0, where T is the transpose. In the complex domain, the difference is that the Hermitian or 

conjugate transpose H is used instead of T. Thus, the orthogonal relationship is expressed as, 

0)1()( =+krrkH eq  (2.21) 

Substituting (2.20) into (2.21), the following equation is obtained,  

0)]()()()[( =+ kkkrrkH qeq α  (2.22) 

From (2.22), the step size α(k) is computed as: 

)()(
)()()(

kk
krrkk H

H

qq
eq

−=α  (2.23) 

Unfortunately, nothing is accomplished, because α(k) cannot be solved without knowing 

err(k). 

The solution is to replace the orthogonal relationship of the search directions with A-

orthogonal. q(k) and err(k+1) are defined to be A-orthogonal if 

0)1()( =+⋅⋅ krrkH eAq  (2.24) 

where A is a positive definite symmetric matrix, which in turn guarantees that the left side of 

(2.24) can be regarded as some form of the inner product of the vectors q(k) and err(k+1), with 

the usual properties in a projective plane. In other words, two vectors in A-orthogonal 

relationship are orthogonal in a projective plane, but not in the current plane. 

Fortunately, there is a simple way to generate the A-orthogonal directions, {q(0), q(1), … 

q(k), …}, namely, conjugate Gram-Schmidt process. Here, a set of linear independent vectors 

http://people.sc.fsu.edu/~jburkardt/html/linear_glossary.html#Positive_Definite_Matrix
http://people.sc.fsu.edu/~jburkardt/html/linear_glossary.html#Inner_Product
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are defined as {u(0), u(1), … u(k), …}. To construct q(k), take u(k) and subtract out any 

components that are not A-orthogonal to the previous q vectors. In other words, the process to 

generate q(k) is as follows. First, initialize with q(0) = u(0). Second, for k > 0, set 

∑
−

=

+=
1

0
)()()(

k

i
ki ikk quq β  (2.25) 

In fact, CG is simply the method of conjugate directions where the search directions are 

constructed by conjugation of the residuals. (that is, u(k) = r(k)). Therefore, following the same 

procedure as in the real domain in [66], βki can be simplified and derived as, 

   

1              0         

1           
)1()1(

)()(









+>

+=
= −−

ik

ik
rr
rr

k
H
k

k
H
k

kiβ
 (2.26) 

Equation (2.26) indicates that it is no longer necessary to store old search vectors to 

ensure the A-orthogonality of the new search vector. This major advance is significant reduction 

of both space complexity and computational complexity at each iteration, which is desirable in 

real-world applications. Henceforth, the abbreviation )(kβ  is used instead of 1, −kkβ , which can 

be simplified further as follows, 

   
)1()1(

)()()( 1, −−
== − kk

kkk H

H

kk rr
rrββ  (2.27) 

By substituting the residue by the negative of the gradient estimate (that is, )()( kk gr −= ), 

the method of complex conjugate gradient directions can be summarized by the following 

equations, 

)0()0()0( grq −==  (2.28) 



 28 

)1()1(
)()()(
−−

=
kk
kkk H

H

rr
rrβ

)1()1(
)()(
−−

=
kk
kk

H

H

gg
gg

 (2.29) 

)1()()()1()()()( −+−=−+= kkkkkkk qgqrq ββ  (2.30) 

It is worthwhile to mention that )(kβ  is a real value.  

Assuming w(k) is a N×1 vector, the degree of freedom of the direction searching space is 

N. Theoretically, to achieve wopt, the number of required A-orthogonal search directions is equal 

to or less than N. In other words, practically )(kq  needs to be reset to the negative gradient every 

D iterations, where D ≤ N. D is called the search dimension parameter. 

2.2 Formulation of the CBCI-LMS Algorithm 

In this subsection, the most general form of generating the complex block conjugate 

algorithms with optimal step sizes is developed, using all the available degrees of freedom of the 

system. The convergence factor, which is unique for each coefficient of the adaptive filter, is 

derived at each iteration. This yields the CBCI-LMS method [70]–[71]. 

As mentioned previously, the proposed CBCI-LMS algorithm employs the individual 

convergence factor for each weight of the adaptive filter. In a block formulation using the 

method of the conjugate gradients, the coefficient update formula of )(kw  can be written as 

)()()()1( kkk= k qααww ++  (2.31) 

where the step size matrix )(kαα  is a diagonal matrix of order N, whose diagonal elements are 

the convergence factors for the components of )(kw , i.e., 
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Its diagonal elements construct the step size vector )(kα , defined as 

T
N kkkk )](),...(),([)( 21 ααα=α  (2.33) 

The objective is searching for the appropriate step sizes, )(kα  or )(kαα , such that the 

MSE at next iteration, {eH(k+1)e(k+1)/L}, is minimized. This is achieved by considering the 

performance surface of the MSE function in an N+1 dimensional space where the convergence 

factors of the adaptive filter are N independent variables. Taking the complex Taylor series 

expansion [72], the error at the (k+1)th iteration, e(k +1), can be expressed in terms of e(k), and 

the derivatives of e(k) with respect to the current filter weights w(k), as follows, 
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where 

. ,… 2, 1, =  ,)()1()( Nnkwkwkw nnn −+=∆  (2.35) 

Since the error vector )(ke  given by (2.6) is linear to the weight vector w(k), the 

derivatives higher than the first order in (2.34) are equal to zero. Thus, (2.34) becomes 
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Substituting (2.6) and (2.31) into (2.36), the following is obtained, 

)()()()()1( kkkkk qααXee −=+  (2.37) 
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The next step is to choose an optimal value for each convergence factor such that the 

approximation of MSE at next iteration is minimized. In other words, the following condition 

must be satisfied, 
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The MSE at next iteration can be rewritten as 

321)1()1( SSSkkH ++=++ ee  (2.39) 

where 

)()(1 kkS H ee=  (2.40) 

)]()()()()()()()([2 kkkkkkkkS HHH eXααqqααXe +−=  

)]()()()()()()()([ kkkkkkkk HTH eXQααQXe +−=  (2.41) 

)()()()()()(3 kkkkkkS HH qααXXααq=  

)()()()()()( kkkkkk HHT αQXXQα=  (2.42) 

where the diagonal matrix of the search direction, Q(k), is given by, 
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By straightforward matrix and vector manipulations,  
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Combing (2.38) and (2.39) yields 
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Evaluating (2.47), the following is obtained, 

)]()()(Re[)()()()()( kkkkkkkk HHHH eXQαQXXQ =  (2.48) 

Assume 

)()()()()( kkkkk HH QXXQC =  (2.49) 

It is easy to prove that C(k) shown in (2.49) is positive definite. Then the final formula of 

the step size vector )(kα  is derived as follows, 

)]()()(Re[)( -1 kkkk HH eXQCα =  (2.50) 

where the notation 1[.]−  denotes the inverse of a square matrix. Then, the step size matrix )(kαα  

can be obtained from )(kα  according to (2.32). 
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Since the proposed technique tries to achieve convergence in one step, an optional scaling 

factor γ can be introduced to ensure the stability of convergence. Equation (2.31) can thus be 

modified as 

)()()()1( kkk= k qααww ⋅++ γ  (2.51) 

In summary, the CBCI-LMS algorithm can be described in steps as follows. 

1) Initialize 

Start with k = 0; w(k) = 0. 

2) Calculate the Error Vector, e(k) 

)()()()( kkkk wXde −= . 

3) Compute the Gradient Vector, g(k) 

)()(2)( kk
L

k H eXg −≈ . 

4) Search for the Conjugate Gradient Direction, q(k) 

T
N kqkqkqk )](),...(),([)( 21=q . 

If k/D is an integer, then do the following, 

)()( kk gq −=  

otherwise, 
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q
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The diagonal matrix of the search direction, Q(k), is given by, 
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5) Derive the Optimal Step Size Vector α(k)  

α(k) is the optimal step size vector to update the weight vector w(k), given by 

T
N kkkk )](),...(),([)( 21 ααα=α . 

α(k) is derived as 

)]()()()()()([)]()()()([)( -1 kkkkkkkkkkk HHTTHH eXQeXQQXXQα +⋅= ∗ . 

Then the step size matrix αα(k) is given by 
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6) Update w(k) 

)()()()1( kkk= k qααww ⋅++ γ . 

7) Check the convergence of the algorithm  

Calculate the Euclidean distance of the performance measurement at iterations k and 

k+1. If this distance is less than a threshold value ε, terminate the adaptation; otherwise, k 

= k+1, and go back to Step 2. 
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2.3 Formulation of the CBC-LMS Algorithm 

In the CBC-LMS algorithm developed in [72]–[74], the time-varying convergence factor, 

)(kα , although updated at each iteration, is assumed to be the same for all the filter coefficients. 

Thus, the convergence factors given in (2.32) are now modified as 

)()(...)()( 21 kkkk N αααα ====  (2.52) 

Thus, the formula for updating the CBC-LMS filter coefficients is given by 

)()()()1( kkαk= k qww ++  (2.53) 

The convergence factor, )(kα , is also optimized in the LMS sense defined by (2.38) 

which, in the CBC-LMS method, becomes 
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In this case, (2.47) becomes 
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By replacing )(kαα  with Ik ⋅)(α  (I is the N×N identity matrix) in (2.40)–(2.42), the 

following derivatives are obtained, 
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Substituting the above resulting expressions (2.56)–(2.58) into (2.55), the optimal 

convergence factor )(kα  is calculated as, 

)()()()(2
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=α  (2.59) 

Similar to the CBCI-LMS algorithm, an optional scaling factor γ can be introduced to the 

final formulation. Equation (2.53) is modified as 

)()()()1( kkαk= k qww ⋅⋅++ γ  (2.60) 

Finally, the Complex Block algorithm can be analyzed in steps as follows.  

1) Initialize 

Start with k = 0, w(k) = 0. 

2) Calculate the Error Vector, e(k) 

e(k) = d(k) – X (k)w(k) . 

3) Compute the Gradient Vector, g(k) 

(k)(k)
L

k H eXg ⋅−≈
2)( . 

4) Search for the Conjugate Gradient Direction, q(k) 

If k/D is an integer, then do the following, 

)()( kk gq −=  

otherwise, 
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5) Derive the Optimal Step Size Vector α(k)  

α(k) is the optimal step size vector to update the weight vector w(k), derived as 
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6) Update the weight vector, w(k) 

)()()()1( kkαk= k qww ⋅++ γ . 

7) Check the Convergence of the Algorithm  

Calculate the Euclidean distance of the performance measurement at iterations k and 

k+1. If this distance is less than a threshold value ε, terminate the adaptation. Otherwise, k 

= k+1, and go to step 2. 

2.4 Computational Complexity 

In this subsection, the computational complexities of the CBCI-LMS and CBC-LMS 

algorithms are studied and compared to the Complex BLMS technique. 

 

Table 4 Computational Complexities 

MPI 
 

Complex 
BLMS 

CBC- 
LMS 

CBCI- 
LMS 

Error 
Computation 

4LN 4LN 4LN 

Gradient 
Computation 

4LN 4LN 4LN 

Direction 
Search 

_ 4N 4N 

Step Size and 
Weight Update 

2N 4LN+6N+2L 24N2+4LN–
10N+4L 

Total 
 

8LN 
+2N 

12LN 
+2L+10N 

12LN +24N2–
6N+4L 
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The weight update equation (2.51) for the CBCI-LMS involves matrix inversion, which is 

computationally intensive and impractical, especially for high-order adaptive systems. However, 

the matrix inversion can be significantly simplified in two ways [74]. 

The first way is introducing the matrix inversion lemma given in APPENDIX. As a result, 

the computational complexity of the CBCI-LMS algorithm is considerably reduced to O(LN) per 

iteration, which is comparable to the other methods. Employing the matrix inversion lemma will 

not degrade the convergence speed and accuracy, which are confirmed in the simulation results 

given in Chapter 3. With the use of the matrix inversion lemma, the CBCI-LMS algorithm 

requires only one matrix inversion, which happens at the first iteration of the adaptation process.  

The second way is replacing the matrix C in (2.49) at the first iteration with a diagonal 

matrix Cd, which contains only the diagonal elements of C. Therefore, the objective matrix for 

inversion is Cd instead of C, and thus the computations for matrix inversion is reduced from 

O(N3) to O(N), which is a substantial saving in the number of required computations. It is 

worthwhile to mention that it is possible to estimate C with an identity matrix I. However, it was 

found from the computer simulations that using Cd at k = 1 results in much faster adaptation than 

using the identity matrix. 

From the discussion above, there are two implementations of the matrix inversion in the 

CBCI-LMS algorithm. In CBCI-LMS(1), C is inverted directly in the first iteration and the 

matrix inversion lemma is applied when k > 1. In CBCI-LMS(2), C is estimated as a diagonal 

matrix Cd at k = 1 and then the lemma is applied. It is worthwhile to mention that, CBCI-LMS(1), 

in comparison with CBCI-LMS(2), requires a large number of computations only at the first 

iteration. In the cost of the increased computations, CBCI-LMS(1) converges faster and uses 
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fewer samples to achieve convergence. After the first iteration, CBCI-LMS(1) and CBCI-LMS(2) 

are identical. 

The real-valued Multiplications Per Iteration (MPI) for these methods are summarized in 

Table 4. Table 4 clearly indicates that the calculation of the optimal step size and weight update 

results in more computations at each iteration for the CBCI-LMS method. 

However, the algorithms with more MPI usually converge in much fewer iterations than 

the other methods. Thus, it is not sufficient to compare the computational complexity only by 

employing the criterion of MPI. Hence, the overall real Multiplications required for convergence 

is adopted as a measure of computational complexity, which is defined as follows: 

Multiplications = MPI × Nc (2.61) 

where Nc  denotes the number of iterations for convergence. 

For example, with regards to the CBC-LMS and the Complex BLMS, it can be seen that 

the MPI of CBC-LMS is approximately 1.5 times the MPI of Complex BLMS. However, the 

experimental results in Chapter 3 show that the Nc for Complex BLMS is more than 1.5 times the 

Nc of CBC-LMS. As a result, the CBC-LMS requires less overall computations or 

Multiplications.  

Besides, even in the situation that more Multiplications are required for convergence, if 

the number of operations needed per iteration is within the capability of DSP, the proposed 

algorithms still converge faster in real time by requiring fewer samples. Recent advances in 

digital signal processing hardware are making high performance algorithms desirable, even at the 

expense of increased computations.  
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2.5 Conclusion 

In this chapter, the general formulation is given which leads to two classes of adaptive 

algorithms: the CBCI-LMS and the CBC-LMS algorithms. It is shown that the CBC-LMS is 

obtained from the CBCI-LMS, with a simple trade-off between adaptation performance and 

computational complexity. Both algorithms apply the CG theory to find the orthogonal directions 

of the adaptive filter coefficients. Besides, the convergence factors are generated using the 

complex Taylor series approximation at each iteration to minimize the next iteration’s MSE 

between the adaptive filter output and the desired signal. Computational complexities of the 

proposed methods are analyzed and compared to the Complex BLMS method.  
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CHAPTER 3 CHANNEL ESTIMATION AND EQUALIZATION 
BASED ON PROPOSED CBCI-LMS AND CBC-LMS 

The performance of the generated optimal conjugate gradient algorithms using time-

varying convergence factors, CBCI-LMS and CBC-LMS, are evaluated by means of computer 

simulations as well as laboratory experiment. The experiments include channel identification as 

well as channel equalization. In addition, the implementation aspects are discussed, including 

block shifting, block size selection, search dimension parameter, and optional scaling factor. 

Also, the proposed algorithms are compared with three other algorithms, namely, the Complex 

BLMS, the Complex OBAI-LMS, and the Complex OBA-LMS, It is demonstrated that the major 

attractive feature of the CBC-LMS and the CBCI-LMS algorithms are the considerable reduction 

in the number of required iterations for convergence.  

This chapter is organized as follows. Two applications in wireless communications are 

simulated: channel estimation in 3.1 and channel equalization in 3.2. Implementation issues are 

discussed in 3.3. Subsection 3.4 compares the proposed algorithms with the state of the art 

methods, followed by the conclusion in 3.5. 

3.1 Channel Estimates 

The unknown fading channel can be modeled as a complex FIR filter F(z) shown in Fig. 

6. 
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Figure 6 Signal Model for Estimating an Unknown Complex Channel 

Both the unknown channel and the adaptive filter are driven by the same input signal, 

)(kx . Practically, noise is uncorrelated with the channel input, which can be represented at the 

channel output as an additive component. To reduce the error signal )(ke , the adaptive filter 

)(zT  tries to emulate the channel’s transfer characteristics. After adaptation, the unknown 

channel is “identified” in the sense that its transfer function can be specified as essentially the 

same as that of the adaptive filter. Adaptive system identification is used to model an unknown 

channel when the training signal is available. 

The performance of the proposed methods is measured in terms of the Normalized Error 

Energy (NEE), which is defined as the ratio of the estimated error energy to the energy of the 

unknown transfer function, as follows 

ωω
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ω
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where )( ωjeF  and )( ωjeT  are the transfer functions of the unknown complex channel and the 

adaptive filter, respectively. Since NEE is independent of the input signal, it is a more reliable 

performance measurement than the energy of the error signal. 

To study the performance of the proposed CBC-LMS and CBCI-LMS algorithms, two 

series of simulations are carried out: time-invariant fading and time-variant fading. In 3.1.1, 

time-invariant fading is assumed, while in 3.1.2, time-variant fading is assumed. 

3.1.1 Computer Simulation for Time-invariant Channel Estimation 

In this subsection, time-invariant channel is simulated. The simulation parameters are set 

up as follows. The search dimension parameter D = 5 for the CBCI-LMS and CBC-LMS 

methods. The adaptive filter has N = 10 coefficients and L = 2N = 20 for all the simulated 

algorithms. The coefficients of )(zT  are initialized to zero before adaptation. Two different noise 

conditions are simulated: no additive noise and zero mean complex white Gaussian noise with 

the Signal to Noise Ratio (SNR) equal to 35dB. The unknown channel )(zF  is defined as 

follows, 

∑
=

−=
I

i

i
i zazF

0
)(  (3.2) 

with the coefficients of )(zF  listed in Table 5. 
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Table 5 Coefficients of F(z) for Time-invariant Channel 

i ai
 

0 – 0.8777 + j·1.1746 

1 – 1.3014 – j·0.8775 

2 – 0.5138 – j·0.6327 

3 1.2437 – j·1.9955 

4 2.1850 – j·0.3038 

5 1.0560 + j·1.6765 

6 – 0.3915 – j·0.4673 

7 – 0.5491 – j·0.2086 

8 0.0431 – j·0.4020 

 

The input signal, )(kx , is a zero-mean complex white Gaussian sequence. The values of 

the fixed step size µ used in the BLMS algorithm is 0.1. The value of µ has been verified by the 

equation below, 

max

10
λ

µ <<  (3.3) 

where λmax is the largest eigenvalue of the input correlation matrix. The selected values of µ are 

approximately 
max2
1
λ

 for this simulation. 



 44 

 

Figure 7 NEE vs. Sample Index when Input Signal x(k) is White Gaussian Signal without 
Additive Noise n(k) 

 

Figure 8 NEE vs. Sample Index when Input Signal x(k) and Additive Noise n(k) are both 
White Gaussian Signals with SNR=35dB. 
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Figs. 7–8 show that the CBCI-LMS(1) outperforms the CBCI-LMS(2), and the CBCI-

LMS(2) outperforms the CBC-LMS, while all of them outperform Complex BLMS regardless of 

the additive noise. This has been found true from extensive simulations using other unknown 

channels in our experiments.  

Fig. 7–8 indicates that with or without noise, all the algorithms can estimate the channel 

properties accurately, with numerical error left only. From Fig. 8, it is worthwhile to mention 

that the residual NEE upon convergence are equivalent to the input SNR for all these algorithms. 

Fig. 8 also illustrates the relationship between the convergence speed and the residual NEE. The 

algorithm with faster convergence has higher level of residual NEE. This reveals the fact that 

larger residual error is the inevitable cost for the significant improvement of convergence speed. 

3.1.2 Computer Simulation for Time-variant Channel Estimation 

There are two important types of time-variant changes in wireless channels: Linear 

change and abrupt change. Two examples in cellular mobile communications are given to 

illustrate these two types of changes as follows. The frequent channel change due to relative 

motion between the user and base station is a continuous linear change in the channel 

coefficients. The change by handoff between two towers or shadowing phenomenon when the 

mobile user entering a building or tunnel causes an abrupt change in the channel coefficients. In 

this subsection, the performance of the proposed algorithms is studied in both linearly and 

abruptly changing channels. 

The simulation parameters are set up as follows. The search dimension parameter D = 5 

for the CBCI-LMS and CBC-LMS methods. The adaptive filter has N = 10 coefficients and the 
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block size L = 2N = 20 for all the simulated algorithms. The coefficients of )(zT  are initialized to 

zero before adaptation.  

In the first series of simulations, linear time-variant channel is modeled as F(z, k), which 

is defined as follows, 

∑
=

−⋅+=
I

i

i
ii zkbakzF

0
)(),(  (3.4) 

where ia ’s are listed in Table 5 and ib ’s are normally distributed variables with zero mean and 

variance equal to 10-6. The input signal is complex white Gaussian signal as in 3.1.1. Complex 

white Gaussian noise of SNR=35dB is simulated. 

The NEE vs. sample index when the step size μ of the Complex BLMS equals to 0.1 and 

0.25 are plotted in Figs 9 and 10, respectively. Fig. 10 shows that in a time-variant environment, 

a relatively large step size leads to divergence for the Complex BLMS. The presented results 

clearly indicate that in order to guarantee convergence and achieve acceptable convergence 

speed, the value of μ for the Complex BLMS method has to be set up manually, according to 

different source signals, environmental parameters and simulation conditions. 
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Figure 9 NEE vs. Sample Index when the Complex BLMS converges with SNR=35dB in 
Linearly Changing Channel 

 

Figure 10 NEE vs. Sample Index when the Complex BLMS diverges with SNR=35dB in 
Linearly Changing Channel 
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In the second series of simulations, an abruptly fading channel is modeled by simulating 

an instantaneous change in channel coefficients during the processing period. When this happens, 

the applied algorithm has to quickly recover from this variation and reconverge to achieve a new 

steady state. The coefficients of F(z) before abrupt change are listed in Table 5, while the 

coefficients of F(z) after abrupt change are listed in Table 6 below. 

Table 6 Coefficients of F(z) for Abrupt Changing Channel 

i ai
 

0 0.0883 + j·0.234 

1 0.3895 + j·0.1123 

2 0.4823 + j 0.6574 

3 – 0.3132 – j 0.1645 

4 0.6007 + j 0.3245 

5 0.2538 + j 0.4356 

6 – 0.5267 + j·0.2156 

7 – 0.0552 + j 0.123 

8 0.5530 + j·0.5612 

 

Same as the first series of simulation, the input signal is a complex white Gaussian signal. 

The performance of the algorithms are simulated with no additive noise and white Gaussian 

noise with SNR=35dB, respectively, in Figs 11 and 12. 
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Figure 11 NEE vs. Sample Index when Input Signal x(k) is white Gaussian Noise without 
Additive Noise n(k) in Abruptly Changing Channel 

 

Figure 12 NEE vs. Sample Index when Input Signal x(k) and the Additive Noise n(k) are 
both White Gaussian Signal with SNR=35dB in Abruptly Changing Channel 
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Figs 9–12 further confirm that the algorithms in the order of decreasing convergence 

speed are CBCI-LMS(1), CBCI-LMS(2), CBC-LMS, Complex BLMS, for both linear and 

abrupt time variations. The superiority of the proposed algorithms will be further confirmed in 

our simulations under different settings. In contract, the Complex BLMS is inefficient in 

adapting to rapid changes in the channel. 

3.2 Channel Equalization 

In this section, the novel complex adaptive filtering algorithms, CBCI-LMS and CBC-LMS 

are applied to complex channel equalization through computer simulations as well as laboratory 

experiments. 
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Figure 13 Signal Model for Complex Channel Equalization 

A block diagram of channel equalization is shown in Fig. 13. Similar to the channel 

identification model in 3.1, the unknown wireless channel can be modeled as an complex FIR 

filter F(z). In this application, the adaptive processor attempts to recover the received signal x(k), 

which is assumed to be altered by the unknown channel F(z), and to contain additive noise n(k). 
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This noise is generally uncorrelated with the channel input. After convergence, the adaptive filter 

output y(k) is the best match to the channel input s(k), and the adaptive filter T(z) becomes an 

inverse model of the unknown channel F(z). In this sense, the adaptive system equalizes the 

unknown channel. 

Simulations have been performed with different values of SNR. The convergence 

accuracy is expressed in terms of the NEE, defined as 

)()(
)()()(NEE

kk
kkk H

H

ss
ee

=  (3.5) 

3.2.1 Computer Simulation for Channel Equalization 

In this subsection, the performance of the CBCI-LMS and CBC-LMS algorithm are 

tested to equalize a complex channel in computer simulations. The results are compared to those 

obtained from the Complex Block LMS. The input to the unknown channel, s(k), is a 64QAM 

signal. The search dimension parameter D = 5 for the CBCI-LMS and CBC-LMS methods. The 

adaptive filter has N = 10 coefficients and L = 2N = 20 for all the simulated algorithms. The 

coefficients of )(zT  are initialized to zero before adaptation. Two different noise conditions are 

simulated: no additive noise and zero mean white Gaussian noise with the SNR equal to 35dB. In 

the simulations, µ is chosen to be 0.05 and 0.03 for the Complex Block LMS. The unknown 

channel )(zF  is defined as in (3.2), with the coefficients of )(zF  listed in Table 7. 
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Table 7 Coefficients of F(z) in Simulation of Channel Equalization 

i ai
 

0 – 0.8324 + j 0.9238 

1 0.0388 + j 0.1498 

2 – 0.0227 – 0.0280 

 

Figs 14 and 15 plot the NEE vs. sample index under different noise conditions for CBCI-

LMS(1), CBCI-LMS(2), CBC-LMS, and Complex BLMS with µ equal to 0.005 and 0.003. It is 

clearly shown from both plots that the Complex Block LMS algorithm is at the divergent 

boundary when the value of the fixed step size µ is 0.005. The input and output signal 

constellations of the adaptive filter employing the CBCI-LMS(1) technique are plotted in Figs 16 

and 17, respectively. It can be easily inferred from Fig. 16 that the channel distortion destroyed 

the signal. From Fig. 17, it is clearly shown that the CBCI-LMS(1) effectively equalized the 

unknown channel and recovered the signal. The residual error left after the equalization is from 

the additive noise. 
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Figure 14 NEE vs. Sample Index without Additive Noise n(k) 

 

Figure 15 NEE vs. Sample Index when Additive Noise n(k) is White Gaussian Signal with 
SNR=35dB 
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Figure 16 Constellation of Unknown Channel Output 

 

Figure 17 Constellation of Recovered Signal 
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3.2.2 Laboratory Experiment for Channel Equalization 

In this subsection, laboratory experiments have been carried out to examine the 

performance of the proposed CBCI-LMS and CBC-LMS in an equalization model. The real-

world signal generation and processing diagram is illustrated in Fig. 18. Firstly, an Agilent ESG 

Vector Signal Generator generates the source signal s(k), which is a QPSK signal, 50% roll-off 

raised-cosine pulse-shaping, centered at 70MHz. The symbol rate is 5 MHz, yielding roughly a 

5×(1+0.5) = 7.5 MHz signal bandwidth. The signal then passes through a 70 MHz bandpass filter 

channel. The amplitude response and group delay of the bandpass filter is analyzed with an 

Agilent E5071C Network Analyzer, and is shown in Fig. 19, along with the input signal 

spectrum. As can be seen from Fig. 19, the bandpass filter causes significant distortion of the 

input signal. This is also illustrated in Fig. 20, which shows the NEE of the unequalized signal is 

close to –10dB. Subsequently, the signal is received and digitized by a ZTEC Instruments 

ZT8441 IF Digitizer. The ZT8441 samples and digitally downconverts the input bandpass signal, 

creating the baseband I/Q components which are then loaded into a computer. Finally, Matlab is 

used to process and recover the symbols. This real-world experimentation is carried out in a low 

noise environment with SNR ≈ 60dB, which can be proved by the residual error shown in Fig. 20. 

300 symbols are collected to test the performance of both the proposed methods and Complex 

BLMS. The order of the adaptive filter is set to 15 and the block size is 18. Experiments show 

that the best fixed step size for the Complex BLMS is 0.035 based on trial and error. The 

performance accuracy is measured by the error signal e(k) in dB. 
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Figure 18 Block Diagram of the Real-world Laboratory Data Experiment 

 

 

Figure 19 Input Signal Spectrum and Bandpass Filter Responses 
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Figure 20 Error in dB vs. Iterations for Laboratory Data Experiment 

In Fig 20, the error is shown as a function of the iteration index. The three methods, 

CBCI-LMS(1), CBC-LMS, and Complex BLMS are applied, and they yield comparable residual 

error after convergence. It is clear that the proposed CBCI-LMS(1) method converges 

immediately after adaptation, and CBC-LMS converges within 20 iterations. Both of the 

proposed algorithms converge much faster than 100 iterations yielded by the Complex BLMS. 

This further confirms the superiority of the proposed techniques in terms of convergence speed 

while maintaining comparable accuracy. 
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simulation in 3.1, the input signal is complex white Gaussian signal. The adaptive filter has N = 

10 coefficients for all the simulated algorithms. The coefficients of T(z) are initialized to zero 

before adaptation. Time-invariant channel is simulated with F(z) defined as in Table 5. 

3.3.1 Block Shifting  

The processing block for the CBCI-LMS and CBC- LMS methods generated earlier is 

shifted by one sample at each iteration. In this subsection, different shifting techniques are 

discussed. The blocks of the processing signals, xl(k) in (2.2) and dl(k) in (2.4), can be either 

overlapping or disjoint. The shifting technique is carried out by dropping the oldest Nf signals 

and incorporating Nf new ones with (L– Nf) overlapping signals between the previous and current 

blocks. Nf is the shifting window size. In other words, there are (L– Nf) signals in the previous 

block which are reused in the current block. This is similar to the data-reusing technique 

discussed in [75], in which the Bi-Normalized Data-Reusing LMS (BNDR-LMS) technique 

improves the speed of convergence without sacrificing stability. As an illustration, the signals 

xl(k) in (2.2) and dl(k) in (2.4) for both the CBCI-LMS and the CBC-LMS algorithms are 

redefined as 

T
fffl NlkNxlkNxlkNxk )](),...2(),1([)( −+−+−+=x  (3.6) 

)1()( −+= lkNdkd fl  (3.7) 

The range of Nf is from 0 to L.  

It can be shown that only using the overlapping block, the CBCI-LMS algorithm can 

result in a recursive relation in the matrix inversion lemma given in APPENDIX. In other words, 

matrix inversion is not feasible when the disjoint block is used to implement CBCI-LMS. 



 59 

Therefore, throughout this dissertation, overlapping block is employed for the CBCI-LMS 

algorithm, and Nf = 1 is the case investigated for the overlapping block. 

The performance of the proposed algorithms using an overlapping block with Nf = 1, and 

a disjoint block with Nf = L, are compared in a noise free condition. The scaling factor is chosen 

to be 0.8 for both the algorithms, and the search dimension parameter D = 5. The obtained NEE 

is plotted in Figs 21 and 22, by both block shifting techniques with L = 2N = 20. Fig. 21 plots 

NEE vs. sample index, and Fig. 22 shows NEE vs. iteration index, for both algorithms with both 

block shifting techniques. 

 

Figure 21 NEE vs. Sample Index with Disjoint and Overlapping Blocks for CBC-LMS and 
CBCI-LMS without Additive Noise 
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Figure 22 NEE vs. Iteration Index with Disjoint and Overlapping Blocks for CBC-LMS 
and CBCI-LMS without Additive Noise 
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3.3.2 Block Size 

The CBCI-LMS and CBC-LMS algorithms are both block processing algorithms which 

use a block of data to estimate the “expectation” operator in (2.11) and (2.38). The block size is 

determined based on the tradeoff between the computational complexity and the performance 

accuracy. 

If the block size L is small, the algorithm is more effective in tracking the time variation 

of the unknown channel. It is very important that the unknown channel parameters stay 

approximately constant within one processing block, which is quasi-stationary. Thus, the 

problem with convergence arises when the unknown channel is fast fading, in which case a large 

L violates the assumption of quasi-stationarity. Besides, a large block size requires large amount 

of computations, which increases the total computational complexity. 

On the other hand, a small block size may lead to inaccurate estimation of the expected 

values, or even divergence, especially for the CBCI-LMS. If the block size L is equal to 1, the 

algorithm becomes an online sequential technique, which updates the coefficients of the adaptive 

filter based on the current input sample only. The sequential method eliminates the “expectation” 

operator, resulting in worse performance than a block processing approach. 

The performance of the proposed algorithms using different block sizes with SNR=35dB 

is compared in terms of NEE’s defined in (3.1) in Figs 23–25. The search dimension parameter 

D = 5 for the CBCI-LMS and CBC-LMS methods. 
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Figure 23 NEE vs. Sample Index for CBCI-LMS(1) with Different L 

 

Figure 24 NEE vs. Sample Index for CBCI-LMS(2) with Different L 
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Figure 25 NEE vs. Sample Index for CBC-LMS with Different L 
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size requires more samples to fill in the signal processing block, which slows down the 

adaptation process. In this regard, a balance should be decided between the adaptation time and 

the accuracy required for convergence when selecting a block size. L > N is found, expectedly, to 

have desirable convergence properties. Particularly, L = 2N is always adopted. 

3.3.3 Search Dimension Parameter 

As mentioned in 2.1.2, D is the search dimension parameter. The valid range of D is 1 < 

D ≤ N. When D = 1, the proposed algorithms degrade to gradient based methods. When D > N, 

the adaptation uses more orthogonal directions than the actual dimensions of the system, 

resulting in the redundancy and high level of residual error. In this subsection, the search 

dimension parameter D is investigated.  

 

Figure 26 NEE vs. Sample Index for CBCI-LMS(2) with Different D 

25 30 35 40 45 50 55
-40

-35

-30

-25

-20

-15

-10

-5

0

Sample Index

N
E

E
 in

 d
B

 

 
CBCI-LMS(2) with D=1
CBCI-LMS(2) with D=5
CBCI-LMS(2) with D=10



 65 

 

Figure 27 NEE vs. Sample Index for CBC-LMS with Different D  
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3.3.4 Optional Scaling Factor 

In practice, it is desirable to introduce an additional adaptation parameter γ  for the final 

weight update formula as in (2.51) and (2.60). Adding this optional scaling faction is based on 

two considerations. First, since both the CBCI-LMS and CBC-LMS techniques try to achieve the 

minimum MSE in one step, a scaling factor γ  is introduced to ensure the convergence stability 

and enhance the adaptation performance. Second, according to the speed of the time variation, a 

mechanism should be available to adjust )(kw∆ , so that the algorithms can track the time 

variation regardless of the channel changing speed. The choice of γ  should be made according 

to the convergence property and the speed of the unknown channel’s time variation. 

 

Figure 28 NEE vs. Sample Index for CBCI-LMS(1) with Different gamma 
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Figure 29 NEE vs. Sample Index for CBCI-LMS(2) with Different gamma 

 

Figure 30 NEE vs. Sample Index for CBC-LMS with Different gamma 
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Figs 28–30 plot the NEE vs. sample index with different γ  for CBCI-LMS(1), CBCI-

LMS(2), and CBC-LMS, respectively. The search dimension parameter D = 5 for the CBCI-

LMS and CBC-LMS methods. The block size L = 20 and the filter has N = 10 taps. When 2=γ , 

the CBCI-LMS(1) and CBCI-LMS(2) diverge and the CBC-LMS cannot converge to the 

comparable SNR value, –35dB. When γ  = 0.2, 0.5, and 1, it is found out that a smaller γ  results 

in smaller residual error but slower convergence, while a greater value of γ  yields faster 

convergence but a higher level of error after adaptation. The optimal choice of γ  varies 

according to the tradeoff between the performance requirement and the convergence speed. In 

fact, the CBCI-LMS and CBC-LMS algorithms have the capability to achieve convergence over 

a certain range of γ (approximately 5.10 << γ ). From our intensive experiments, the range of 

0.5–1 is recommended.  

3.4 Comparison to Complex OBAI-LMS and Complex OBA-LMS 

In this section, the proposed CBCI-LMS is compared to the Complex OBAI-LMS, and 

the proposed CBC-LMS is compared to the Complex OBA-LMS. Same as the simulation setup 

in 3.1.1, the input signal is complex white Gaussian signal. The search dimension parameter D = 

5 for the CBCI-LMS and CBC-LMS methods. The number of adaptive filter coefficients is N = 

10, and the block size is L = 20 for all the simulated algorithms. The coefficients of T(z) are 

initialized to zero before adaptation. Time-invariant channel is simulated with F(z) defined as in 

Table 5. All the simulation results are averaged over 100 Monte Carlo runs. 
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Figure 31 NEE vs. Sample Index for Comparisons of CBCI-LMS(1) and Complex OBAI-
LMS(1) with Different Gamma 

 
Figure 32 NEE vs. Sample Index for Comparisons of the CBCI-LMS(2) and Complex 
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Figure 33 NEE vs. Sample Index for Comparisons of CBC-LMS and Complex OBA-LMS 
with Different gamma 
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channel equalization, both computer simulation and real-world experiment are carried out. 

Several implementation issues are discussed, including the block shifting, the block size, the 

search dimension parameter, and the optional scaling factor. Also, the proposed techniques are 

compared to the Complex BLMS, the Complex OBAI-LMS and the OBA-LMS methods. The 

results confirm that the CBCI-LMS and CBC-LMS overcomes the drawback of the techniques 

with fixed step sizes and demonstrates remarkable improvement in convergence speed. 
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CHAPTER 4 ADAPTIVE ARRAY BEAMFORMING BASED ON 
PROPOSED CBCI-LMS AND CBC-LMS 

In the recent decade, antenna arrays [29] frequently employ adaptive beamforming [76]–

[81] for directional signal reception. Similar to other adaptive filtering problems, the LMS based 

algorithms [80], [81] are widely used in adaptive array beamforming. As mentioned before, the 

LMS algorithms are gradient descent methods and their performance depends on the appropriate 

choice of the step size. 

In this chapter, the previously proposed complex block conjugate-gradient LMS 

algorithm with optimal step sizes, CBCI-LMS and CBC-LMS are applied to adaptive array 

beamforming.  

4.1 Adaptive Array Beamforming System 

An adaptive array beamforming receiver consists of a set of spatially disposed sensors or 

antenna elements connected to a single or multiple channel processor. Fig. 34 shows an adaptive 

beamformer employing N antenna elements. In this system, M user signals are transmitted from 

spatially separated sources at the same frequency. For the user signal m, its Angle Of Arrival 

(AOA) is denoted by θm, and its time delay at the antenna element n is denoted by tn(θm). Assume 

sm(k) to be the signal transmitted from the user m at the time index k, and Am to be the flat fading 

channel parameter for sm. 
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Figure 34 Adaptive Array Beamformer 

All the antenna elements receive the desired and interference signals simultaneously. 

However, since the antenna elements are spatially separated, their outputs are different at any 

instant of time. The adaptive filter adjusts its weights to produce an output which is desired to 

resemble the wanted signal. The beamformer tries to cancel the interference signals in the system 

output so that the desired signal can be successfully recovered. 

The received signal of the array element n, )(kxn , is given by, 

.1,)()(
1

)( NneksAkx
M

m

tj
mmn

mn ≤≤= ∑
=

θω  (4.1) 

The beamformer output is: 
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)()()( kkky T xw ⋅=  (4.2) 

where x(k) and w(k) are the received signals and the filter weights at the time instant k, 

respectively, which are given by  

T
N kxkxkxk )](),...(),([)( 21=x  (4.3) 

T
N kwkwkwk )](),...(),([)( 21=w  (4.4) 

Assuming user 1 is considered to be the desired user and the remaining sources are the 

interferers, then the Signal to Interference Ratio (SIR), for interferer m is given as 

.2,/SIR 22
1 MmAA mm ≤≤=  (4.5) 

The error signal is formulated as the difference between the designed signal d(k) and the 

actual signal y(k), given by, 

)()()( kykdke −=  (4.6) 

The objective of the adaptive beamformer is to adjust the coefficients of the adaptive filter, 

so that the MSE obtained from (4.6) is minimized. Therefore, these antennas are successfully 

used as spatial filters to receive the desired signals coming from a specific direction by 

minimizing the reception of unwanted signals from other directions. 

4.2 Computer Simulation 

The performance of the proposed methods is compared to that of the well-known fixed 

step size Complex BLMS. In the simulation, M = 6 users are transmitting independent QPSK 

signals, and the corresponding AOA’s of the user signals are shown in Table 8. The complex 

channel parameter Am in (4.1) is generated randomly to ensure a thorough performance 
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evaluation under diverse channel conditions. The SNR is 35dB, which is typical in practice. The 

performance of the proposed algorithms are measured in terms of Symbol Error Rate (SER). 

From practical considerations, the block size is 20 for all the three algorithms. The step size of 

the Complex BLMS algorithm is found to be 0.01 by trial and error that gives the best results. 

Two sets of experiments are carried out, as follows. 

Table 8 AOA of User Signals in Degrees 

User m 1 2 3 4 5 6 

AOA (degrees) 0 –45 30 –20 –10 18 

 

In the first scenario, the randomly generated Am yields 0SIR =m  dB, for all m. The 

number of antenna elements N, is varied between 10 and 15 elements. The SER (dB) vs. N 

achieved by the proposed CBCI-LMS(1), CBCI-LMS(2), CBC-LMS, and Complex BLMS 

algorithms is illustrated for QAM signal in Fig. 35 and QPSK signals in Fig. 36, respectively. 

The corresponding SER (dB) vs. iteration index for N = 15 is shown in Fig. 37 for QAM and Fig. 

38 for QPSK, respectively.  

In the second scenario, the 0SIR =m  dB for m =2 to 5, and dB6SIR6 −= . The 

corresponding SER (dB) vs. N for QAM signal is illustrated in Fig. 39 and for QPSK signal in 

Fig. 40, respectively. Their corresponding SER (dB) vs. iteration index for N = 15 is shown in 

Figs 41 and 42.  
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Figure 35 SER (dB) vs. Number of Receiver Antennas for QAM Signal with SIRm = 0dB 

for m = 2 to 6 

 

Figure 36 SER (dB) vs. Number of Receiver Antennas for QPSK Signal with SIRm = 0dB 
for m = 2 to 6 
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Figure 37 SER (dB) vs. Iteration Index for QAM Signal with SIRm = 0dB for m = 2 to 6 

 

Figure 38 SER (dB) vs. Iteration Index for QPSK Signal with SIRm = 0dB for m = 2 to 6 
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Figure 39 SER (dB) vs. Number of Receiver Antennas for QAM Signal with SIRm = 0dB 
for m = 2 to 5, and SIR6 = –6dB 

 

Figure 40 Number of Number of Receiver Antennas for QPSK Signal with SIRm = 0dB for 
m = 2 to 5, and SIR6 = –6dB 
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Figure 41 SER (dB) vs. Iteration Index for QAM Signal with SIRm = 0dB for m = 2 to 5, 
and SIR6 = –6dB 

 

Figure 42 SER (dB) vs. Iteration Index for QPSK Signal with SIRm = 0dB for m = 2 to 5, 
and SIR6 = –6dB 
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4.3 Conclusion 

Adaptive array beamforming is widely used in antenna arrays for directional signal 

reception. In this chapter, the two proposed adaptive FIR filtering algorithms, CBCI-LMS and 

CBC-LMS, are applied in adaptive array beamforming. The performance of the novel techniques 

is tested for varied number of receiver antenna elements, SIRs, and user signal modulations. The 

extensive simulation results confirm the excellent convergence speed and accuracy obtained 

from the proposed methods in all conditions, irrespective of SIRs, the number of antenna 

elements, and the type of the modulation employed by the users. 

  

http://en.wikipedia.org/wiki/Beamforming
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CHAPTER 5 OPTIMAL BLOCK ADAPTIVE FILTERING 
ALGORITHM BASED ON CIRCULARITY 

Circularity and properness are important second-order statistics of a complex random 

variable, especially for the applications in wireless communication systems [82]–[86]. The 

circularity assumption of a complex communication signal is well grounded and intuitively 

justified, particularly in the linear I/Q modulation context. Commonly, the additive noise in a 

wireless system is also considered as a proper and circular signal (e.g., complex Gaussian signal), 

and thus it will not change the circular nature of the observed signal. However, other transceiver 

imperfections or interference from other signal sources may lead to noncircular observed signals. 

The circularity/noncircularity property of the signals can be exploited in designing wireless 

transceivers or array processors, such as direction of arrival algorithms, Blind Source Separation 

(BSS) methods [87], [88], etc. In [89], [90], techniques have been proposed to mitigate the image 

interference and compensate for the imperfection of a complex signal by restoring the circularity 

of the distorted signal. 

In this chapter, an adaptive blind filtering algorithm is proposed [91]–[93] to restore the 

circularity of a distorted complex signal. The proposed technique is Optimal Block Adaptive 

filtering algorithm based on Circularity, OBA-C. Similar to [89], [90], the proposed algorithm 

employs the concept that under the influence of impairment in wireless communications, the 

received complex signal may lose its circularity. Then the proposed adaptive filtering technique 

compensates for the distortion. Different from [89], [90], to avoid manually selecting an 

appropriate step size, the presented algorithm employs the Taylor series expansion to optimally 

update the adaptive filter coefficients at each iteration. The proposed method fully exploits the 
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degrees of freedom of the optimization space, and an individual complex update is generated for 

each filter coefficient at each iteration. 

This chapter is organized as follows. The second-order statistics of a complex signal is 

described in 5.1. In 5.2, the formulation of the proposed algorithm, OBA-C, is developed. The 

conclusion is given in 5.3. 

5.1 Second-order Statistics: Properness and Circularity 

In this subsection, the second-order statistics of a complex random variable, properness 

and circularity, are studies. In 5.1.1, the mathematical concepts of autocorrelation and 

complementary autocorrelation are briefly reviewed. The definitions of properness and 

circularity are given in 5.1.2. In 5.1.3, the proper and circular nature of a complex 

communication signal is studied. 

5.1.1 Autocorrelation and Complementary Autocorrelation 

Autocorrelation is the cross-correlation of a signal with itself. It is a mathematical tool for 

finding repeating patterns, such as the presence of a periodic signal which has been buried under 

noise, or identifying the missing fundamental frequency in a signal implied by its harmonic 

frequencies. It is widely used in various applications for analyzing time domain signals [94]. 

In statistics, the autocorrelation function of a complex signal s(t), is defined as 

)}()({),()( ττ −= ∗ tstsEtR ts  (5.1) 

If the signal is termed wide-sense stationary, then its mean and variance values are time-

independent. In this case, the autocorrelation function only depends on the time distance between 
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the pair of values but not on their coordinates in timeline. This further implies that the 

autocorrelation can be expressed as a function of the time lag τ only, given by 

)}()({)()( ττ −= ∗ tstsER ts  (5.2) 

From this point on, all signals are assumed essentially wide-sense stationary, which is 

reasonable expectation in practice. 

To fully describe the second-order statistics, the autocorrelation is not sufficient in all 

cases. Therefore, the complementary autocorrelation function [95] is defined as follows, 

)}()({)()( ττ −= tstsEC ts  (5.3) 

Same as autocorrelation function )(τsR , if a signal is wide-sense stationary, its 

complementary autocorrelation function )(τsC  depends only on the time difference, τ . 

5.1.2 Definitions of Properness and Circularity 

In this subsection, the essential second-order statistics, properness and circularity, of a 

complex random signal are defined. A second-order stationary signal )(ts is defined to be proper 

[82] if its complementary autocorrelation function equals to zero regardless of τ, i.e., 

.,0)}()({)()( τττ ∀=−= tstsEC ts  (5.4) 

A complex random signal )(ts  is defined to be circular [84] if the complementary 

autocorrelation of the signal is equal to 0, when τ = 0. 

0)}({)0( 2
)( == tsEC ts  (5.5) 

It is obvious that properness is a more general and stronger version of circularity. Proper 

signals are always circular, but a circular signal can be improper. 
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It is obvious that (5.5) cannot be established for any real-valued quantity. Generally, a 

complex signal s(k) can be formulated as follows, 

)()()( QI ksjksks ⋅+=  (5.6) 

where )(I ts  and )(Q ts  are the I and Q components of )(ks , respectively. 

)(2 ts  can be expressed in terms of )(I ts  and )(Q ts , as follows,  

)()(2)()()]()([)( QI
2

Q
2

I
2

QI
2 tstsjtststjststs +−=+=  (5.7) 

Substituting (5.7) into (5.5), the real and imaginary parts of )}({ 2 tsE  are both equal to 0, 

0)}()({ 2
Q

2
I =− tstsE  (5.8) 

0)}()(2{ QI =tstsE  (5.9) 

From (5.8)–(5.9), the circular nature indicates that the real and imaginary components of 

the signal have the equal power, and they are mutually uncorrelated instantaneously. As a 

stronger version of circularity, properness implies that the real and imaginary parts of )(ts  are 

mutually uncorrelated for all the possible relative time shifts. 

In the following, the theory of second-order statistics is developed for a discrete complex 

signal, s(k), with the sampling interval T. Similar interpretations can be established. The 

autocorrelation and complementary autocorrelation of s(k) are then defined respectively, as 

follows, 

)()}()({)( )()( TRksksER tsks ∆=∆−=∆  (5.10) 

)()}()({)( )()( TCksksEC tsks ∆=∆−=∆  (5.11) 

where ∆  is the difference of the sample indexes.  
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Similar interpretations can be established as above. A discrete complex signal is defined 

proper if  

∆∀=∆−=∆ ,0)}()({)()( ksksEC ks . (5.12) 

A discrete complex signal is defined circular if  

0)}({)0( 2
)( == ksEC ks  (5.13) 

5.1.3 Circularity and Properness of a Communication Signal 

The proper and circular nature of a discrete communication signal is investigated in this 

subsection. In a linear I/Q modulation scheme, the complimentary autocorrelation function of 

)(ks  is computed as, 

)}()({)}()({)}()({)()( ∆−−∆−=∆−=∆ ksksEksksEksksEC QQIIks  

)}()({)}()({ ksksjEksksjE IQIQ ∆−+∆−+  (5.14) 

If )(ks  is one of the most practical complex-alphabet-based communication signals, such 

as QAM and M-PSK, )(I ks  and )(Q ks  are always uncorrelated with each other [96], which 

yields the following two equations, 

.,0)}()({ IQ ∆∀=∆−ksksE  (5.15) 

.,0)}()({ IQ ∆∀=∆− ksksE  (5.16) 

Since )(ks  is a wide-sense stationary signal, )(I ks  and )(Q ks  are both wide-sense 

stationary. The following two equations are satisfied, 

.0,0)}()({ II ≠∆∀=∆−ksksE  (5.17) 
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0,0)}()({ QQ ≠∆∀=∆−ksksE . (5.18) 

When 0=∆ , (5.8) is satisfied. Thus, it is easy to prove that 

.,0)()( ∆∀=∆ksC  (5.19) 

Therefore, the signal )(ks  is proper, and then it is circular for sure.  

As mentioned before, the exception is real-valued modulation signals, such as Binary 

PSK (BPSK), and M-Pulse-Amplitude-Modulation (PAM), for which the complementary 

autocorrelation function is identical to the autocorrelation function. 

5.2 Formulation of the OBA-C Algorithm 

This subsection presents the OBA-C algorithm, which restores the circularity of the 

received signal, using an adaptive FIR filtering structure. 

(.)*

x(k) y(k)

Adaptive 
filter w

 

Figure 43 Proposed OBA-C Compensation Structure 

A block diagram of the OBA-C compensation structure is illustrated in Fig. 43. The 

proposed structure employs an adaptive FIR filter, which is easy to implement in practice. After 

adaptation, the filter output, )(ky , is desired to resemble the non-mismatched signal. 

Assuming the FIR filter has N taps, the weight vector )(kw  and the input vector )(kx  are 

given by, 
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T
N kwkwkwk )]()...(),([)( 21=w  (5.20) 

TNkxkxkxk )]1()...1(),([)( +−−=x  (5.21) 

The filter output, )(ky , can be expressed by vector manipulation as follows, 

)()()()( kkkxky T ∗+= xw  (5.22) 

The Discrete-Time Fourier Transform (DTFT) of )(ky , is given by, 

)()()()( * fXfWfXfY −⋅+=  (5.23) 

where )( fX  and )(* fX −  are the DTFT of )(kx  and )(* kx , respectively, and )( fW  is the 

frequency response of the adaptive filter. 

The compensation scheme is now reduced to finding a blind update rule for the adaptive 

filter coefficients, )(kw . The idea is to force the output of the compensator to regain the circular 

nature at next iteration. In other words, the complementary autocorrelation function defined in 

(5.13) should be satisfied for )1( +ks , as follows, 

0)}1({)0( 2
)1( =+=+ kyEC ky  (5.24) 

Employing the Taylor series expansion,  )1(2 +ky  can be expressed in terms of )(2 ky  

and )(kwn , as follows, 

...)()(
)()(

)()(
)(
)()()1(

1 1

22

1

2
22 +∆∆

∂∂
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∂
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= ==
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∆
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2
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)()(  (5.25) 

where .,...,2,1),()1()( Nnkwkwkw nnn =−+=∆  (5.26) 
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The second and higher order derivative terms can be omitted if )(kw∆  is controlled to be 

sufficiently small. By substituting (5.25) into (5.24), )0()1( +kyC  can be expressed as, 

∑
=

+ ∆
∂

∂
+≈

N

n
n

n
ky kw

kw
kyEkyEC

1

2
2

)1( )(
)(
)}({)}({)0(  

)}()(2{)()}({ 2 kkyEkkyE T ∗⋅⋅∆+= xw  (5.27) 

Therefore, )(kw∆  is obtained as follows, 

+∗⋅⋅−=∆ )]}()(2[{)]([)( 2 kkyEkyEkT xw  (5.28) 

where 
+{.}  denotes the pseudo-inverse. 

From linear algebra, the pseudo-inverse A+ can be implemented in two ways [97]: left 

inverse and right inverse. If the matrix A has dimensions M × N, then the left inverse is 

implemented if M > N, and right inverse if M < N. Here, )]()(2[ kkyE ∗⋅x  in (5.28) is a N × 1 (N > 

1) vector, and thus the left inverse is carried out, as follows, 

HH AAAA 1)( −+ =  (5.29) 

In (5.28), +∗⋅ )]}()(2[{ kkyE x  is a 1 × N vector and )]([ 2 kyE  is a scalar, thus the resulting 

)(kTw∆  is a vector with size 1 × N. 

The final update formula of the adaptive filter coefficients is  

)()()1( kkk www ∆⋅+=+ γ  

TnnyEkyEk ))]}()(2[({)]([)( 2 +∗⋅⋅⋅−= xw γ  (5.30) 

where γ  is an optional scaling factor to further optimize the algorithm performance and to 

compensate for dropping the higher order derivative terms in (5.25).  
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It can be inferred from (5.24), that the expectation operator cannot be ignored. Otherwise 

the recovered signal will approach 0 after convergence, which is obviously incorrect. To estimate 

the expectation values, a block processing technique is chosen instead of an iterative technique. 

In a block processing algorithm, the expectation values, )}({ 2 kyE  and )]()(2[ kkyE ∗⋅x  in (5.28) 

can be approximated by the average over a block of samples. The block size is determined based 

on the tradeoff between the computational complexity and the performance accuracy. A large 

block size requires large amount of computations while a small block size may lead to inaccurate 

estimation of the expected values. Further analysis of the scaling factor and the block size will be 

presented in Chapter 6. 

In summary, the proposed OBA-C I/Q mismatch compensation algorithm with a block 

size L is described as follows. 

1) Initialize 

Start with k = 0; w(k) = 0. 

2) Calculate the recovered signal y(k), 

)()()()( kkkxky T ∗+= xw . 

3) Estimate )]()(2[ kkyE ∗⋅x within the block 

∑
−

=

∗∗ −⋅−⋅≈⋅=
1

0
)()(1)]()(2[)(

L

l
lklky

L
kkyEkA xx .

 

4) Compute the pseudo inverse of )]()(2[ kkyE ∗⋅x  

HH AAAA 1)( −+ = . 

5) Estimate )]([ 2 kyE  within the block 
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∑
−

=

−⋅≈
1

0

22 )(1)]([
L

l
lky

L
kyE . 

6) Update w(k+1) 

TnnyEkyEkk ))]}()(2[({)]([)()1( 2 +∗⋅⋅⋅−=+ xww γ  

7) Check the convergence of the algorithm  

Calculate the Euclidean distance of the performance measurement at iterations k and 

k+1. If this distance is less than a threshold value ε, terminate the adaptation; otherwise, k 

= k+1, and go back to Step 2. 

5.3 Conclusion 

This chapter introduces the essential second-order statistics of a complex signal, and 

gives the formulation of the OBA-C algorithm. The proposed OBA-C is a novel FIR filtering 

algorithm, which utilizes the circular nature of the ideal baseband signal. To avoid manually 

selecting a step size, this technique exploits complex Taylor series expansion to guide the update 

of the adaptive filter coefficients at each iteration. The proposed technique fully exploits the 

degrees of freedom of the optimization space, in order to improve the convergence speed. 
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CHAPTER 6 IQ MISMATCH COMPENSATION EMPLOYING OBA-C 
IN PRACTICAL WIRELESS RECEIVERS 

As mentioned in Chapter 1, wireless systems frequently employ the quadrature 

relationship between a pair of signals to effectively develop compact, yet flexible multimode 

radio systems. The quadrature receivers use two independent channels to form the in-phase and 

the quadrature-phase components of the received signal. Each channel, at a minimum, consists of 

a mixer, a Low Pass Filter (LPF), an amplifier and an ADC. 

However, there are still big challenges ahead before I/Q downconversion principle can be 

applied to receive signals with high dynamic range. These challenges mainly stem from the 

imperfections of the analog components in the I and Q branches of the receiver FE, which is 

called I/Q imbalance problem [23], [28], [40]. The problem is cause by the amplitude and phase 

imbalances between the characteristics of the I and Q branches. These mismatches are 

unavoidable and limit the image frequency attenuation in practical receivers.  

The I/Q imbalance problem has received considerable attention in the past decade. 

Research on DSP-based, both blind and data-aided I/Q imbalance compensation techniques 

continues to receive significant attention [89]–[90], [98]–[103]. Most of the reported work 

focuses on frequency-independent I/Q imbalance compensation in specific receiver architectures 

[23], [28], [98], [99] and assumes certain modulation schemes possibly combined with training 

data. In narrowband wireless transmission, the I/Q imbalance parameters can indeed be modeled 

as a gain and a phase imbalance scalars. However, in modern wideband communications, the 

analog FE is often frequency dependent. Therefore, the I/Q imbalance has to be modeled as the 

difference between the impulse responses of the I and the Q branches.  
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The techniques proposed in [89], [90], [100]–[103] are able to compensate for frequency-

dependent I/Q imbalances. In [100], the pilot data is assumed to be known in advance. The 

method in [101] is based on the ICA, but a reference signal is still required to resolve the 

ambiguity issue of the ICA output signal. Recently, blind approaches were proposed to solve the 

frequency-dependent I/Q imbalance problem based on circularity [89], [90], [102], [103]. These 

iterative algorithms depend on a critical parameter, namely, the step size, to adaptively adjust the 

filter coefficients. These methods have their limitations of slow convergence and dependence on 

the proper choice of the step size according to different signal types and mismatch levels. 

Furthermore, an inappropriate step size may lead to divergence. Regarding the convergence 

speed, the method in [89] requires at least 15,000 samples to converge to an acceptable 

compensation level. This technique was modified in [90] by adding an optional scaling factor to 

improve performance. However, the modified algorithm requires 40,000–50,000 samples to 

reach steady state. Another algorithm was proposed in [90] based on a moment estimator, which 

uses 50,000 received samples, as reported in the simulations of [90]. Compared to [89], the 

technique in [102] uses 30,000 samples, with much higher computational complexity at each 

iteration. The algorithm in [103] utilizes the Constant Modulus Algorithm (CMA) method to 

compensate for the signal in the frequency domain for OFDM receivers. The principal of this 

algorithm can be considered as the circularity-based method implemented in the frequency 

domain. This approach needs more time-domain samples, compared with the algorithms in [89], 

[90], and [102]. In the computer simulations reported in [103], 4,000 OFDM symbols processed 

with 64-point FFT require 256,000 samples, regardless of the guard interval. 
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In this chapter, the proposed non-data-aided algorithm, OBA-C, is applied to solve the 

frequency-dependent I/Q mismatch problem. Computer simulations are carried out to investigate 

the performance of the OBA-C for practical mismatch levels. The simulation results illustrate 

that the OBA-C converges in 4000 samples with a 3-tap compensator, and in only 100 samples 

with a 1-tap filter. In addition, OBA-C is shown to be robust against different I/Q mismatch 

levels in analog components. 

This chaptrer is organized as follows. Section 6.1 presents the basic I/Q signal model 

under frequency-dependent I/Q imbalance. In 6.2, the performance of the OBA-C is evaluated 

under practical mismatch levels. Section 6.3 discusses the implementation issues and 6.4 

analyzes the effects of practical impairments. Finally, conclusion is drawn in 6.5. 

6.1 Frequency-dependent I/Q Imbalance 

In this subsection, the frequency-dependent I/Q imbalance is studies. In 6.1.1, a 

mathematical I/Q mismatch model is developed. The ideal solution for I/Q compensation scheme 

is derived in 6.1.2. In 6.1.3, the circularity of the ideal, the mismatched, and the recovered 

signals is investigated. 
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6.1.1 Mathematical Representations of the I/Q Mismatch Model 

Signal

cos(ωLOt)

gsin(ωLOt+φ)

hnorm(t)

hnorm(t) hQ(t)

hI(t)

x(t)r(t)

j

 

Figure 44 Generalized I/Q Imbalance Model for the Analog FE 

Fig. 44 is the mathematical model of a quadrature receiver with I/Q imbalance. )(tr  is 

the received RF signal, and )(tx  is the complex mismatched signal. A major source of I/Q 

imbalance is the Local Oscillator (LO). The non-ideal LO’s generate the signals )cos( LOtω  and 

)sin( LO ϕω +⋅ tg , where LOω , g , and ϕ  are the radian frequency, the amplitude imbalance, and 

the phase imbalance, respectively. Another I/Q imbalance source is the non-ideal channel 

characteristics of the I and the Q branches. In Fig. 44, )(norm th denotes the ideal nominal impulse 

response of all the other analog components, (e.g., LPF, amplifier, etc.) while  )(I th  and )(Q th  

model the non-ideal channel characteristics of the I and Q branches, respectively. 

From Fig. 44, the observed I/Q signal can be expressed as 

])t(s)()(t)cos()()([)()( LOQLOInorm ϕωω +⋅∗⋅+∗∗= ingtrthjtrththtx  (6.1) 

Assume )(tz  to be the non-mismatched desired signal, formulated as a complex variable, 
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)()()( QI tzjtztz ⋅+=  (6.2) 

The in-phase and quadrature-phase components of )(tz , )(I tz  and )(Q tz , are given by 

the following two equations, respectively, 

)tcos()()()( LOnormI θω +∗= trthtz  (6.3) 

)t(s)()()( LOnormQ θω +∗= intrthtz  (6.4) 

From (6.1) to (6.4), the observed signal )(tx  can be formulated using the ideal signal 

)(tz  and the image interference )(* tz , 

)()()()()( *
21 tztgtztgtx ∗+∗=  (6.5) 

where )(1 tg  and )(2 tg  are given by: 

2/)]()exp()([)( QI1 thjgthtg ⋅⋅+= ϕ  (6.6) 

2/)]()-exp()([)( QI2 thjgthtg ⋅⋅−= ϕ  (6.7) 

In general, complex conjugation in the time domain corresponds to complex conjugation 

and mirroring in the frequency domain. Thus, if the Fourier Transform (FT) of )(tz  is )( fZ , 

then the FT of )(tz∗  is )( fZ −∗ . Therefore, applying the FT of )(tx  formulated in (6.5), )( fX , 

is then obtained, 

)()()()()( *
21 fZfGfZfGfX −⋅+⋅=  (6.8) 

where )(1 fG , )(2 fG  are the FT of )(1 tg , )(2 tg , respectively. From (6.8), the Image Rejection 

Ratio (IRR) of the analog FE is defined as 

2
2

2
1

FE
)(

)(
)(IRR

fG
fG

f =  (6.9) 
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Under perfect I/Q balance, 1=g , 0=ϕ , 1)()( QI == thth , and thus 1)(1 =tg , and 

0)(2 =tg . In this case, the value of )(IRRFE f  is infinity, )()( tztx = , and the observed signal 

)(tx  does not contain any image interference, )(* tz . 

The obtainable image frequency attenuation is limited by analog component matching to 

the 20–40 dB range. From the discussion above, it is clear that the conjugate term )( fZ −∗  in the 

frequency domain, or )(* tz  in the time domain, is the source of image interference. Hence, in 

order to improve the image rejection ratio, this conjugate signal term should be removed or 

mitigated. 

In narrowband transmission, the frequency dependent factors )(I th  and )(Q th  can be 

neglected. In this case, the I/Q imbalance model is simplified to the frequency independent 

scenario, as reported in [98], [99]. 

6.1.2 Ideal Solution for I/Q Compensator 

Substituting (6.8) into (5.23), )( fY  can be expressed in terms of )( fZ  and )(* fZ − , as 

follows, 

)()]()()([)( *
21 fZfGfWfGfY ⋅−⋅+=  

)()]()()([ **
12 fZfGfWfG −⋅−⋅++  (6.10) 

The performance measurement is the overall IRR, which is the sum of the image 

attenuation from the FE and the DSP. From (6.10), the IRR is obtained as a function of 

frequency, given by 
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2*
12

2*
21

)()()(

)()()(
)(IRR

fGfWfG

fGfWfG
f

−+

−+
=  (6.11) 

Ideally, to remove the image interference, )(* fZ − , the compensation filter )( fW  should 

be selected such that 0)()()( *
12 =−⋅+ fGfWfG . Therefore, the ideal solution of )( fW  is given 

by, 

)(
)()( *

1

2
ideal fG

fGfW
−

−=  (6.12) 

6.1.3 Circularity of the Ideal, the Mismatched and the Recovered Signals 

Before the update of the filter coefficients is formulated, the circularity of the ideal signal, 

)(tz , mismatched signal, )(tx , and the compensated signal, )(ty , are discussed in this 

subsection. 

First, since the I/Q compensation technique happens after the downconvertion of the RF 

signals, the properness of the ideal IF signal is being explored. In general, it is unrealistic to 

assume that the exact phase of the incoming signal is known at the receiver. Therefore, to reflect 

this phase uncertainty, a random phase term θ is included in the complex modulating exponential, 

which is assumed to be uniformly distributed over the unit circle and statistically independent of 

the baseband waveform )(ts . In mathematical formulation, the IF signal )(tz  is given as follows, 

)( IF)()( θω += tjetstz  (6.13) 
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where )(ts  is the baseband equivalent and IFω  is the IF frequency. Then, it is straightforward to 

prove that a single IF signal )(tz  is circular if its corresponding baseband equivalent, )(ts , is 

circular, 

)(222
)(

IF)}({)}({)0( θω +⋅== tj
tz etsEtzEC  

)(2
)(

IF)0( θω +⋅= tj
ts eC  (6.14) 

The “moment” )0()(tsC  pulls )0()(tzC  towards zero. Then the conclusion is made that 

randomly phased IF signals with circular baseband waveforms are inherently circular. 

Second, the complementary autocorrelation function of the mismatched signal, )(tx , at 

0=τ , is derived as, 

)}({)0( 2
)( txEC tx =  

})]()()()({[ 2*
21 tztgtztgE ∗+∗=  

1121)(2211 )()()( λλλλλλ ddRgg tz −= ∫ ∫
∞

∞−

∞

∞−  (6.15) 

where, )( 21)( λλ −tzR  is the autocorrelation function of )(tz , which is obviously nonzero. It is 

clear that 0)0()( ≠txc  if 0)()( 21 ≠∗ tgtg . Therefore, under the mismatch scenario, the signal 

loses its circularity.  

Third, the circularity nature of the compensated signal )( fY  given by (6.10) is 

investigated. Without any image interference )(* fZ − , the perfectly compensated signal is 

written as 

)()()(ideal fZfKfY ⋅=  (6.16) 
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where )()()()( *
21 fGfWfGfK −⋅+= .  

It is easy to prove that if )( fZ  is circular, the perfectly compensated signal, )(ideal fY , is 

also circular. 

6.2 Computer Simulation for Frequency-dependent I/Q Mismatch Compensation 

In this section, the performance of the proposed OBA-C technique is tested and compared 

to another circularity based algorithm [89], using the compensation block diagram in Fig. 43. 

The observed signal from the analog FE, )(tx , is digitized to obtain )(kTx , where k is the 

sample index and T is the sampling period. For simplicity of notation, T is dropped. The 

performance measurement is the overall IRR, which is defined in (6.11). Two mismatch levels 

are simulated, a low mismatch level and a high mismatch level. A 3-tap adaptive filter is applied 

and an overlapping block with size L=18 samples is used. The optional scaling factor γ  = 0.5, 

and the input SNR = 30dB. 

6.2.1 Low Mismatch Level Simulation 

In the low mismatch level scenario, which is the same level reported in [91]. The desired 

source signal is a QPSK waveform with a carrier at 3 MHz intermediate frequency. The symbol 

rate is 3.84 MHz and the pulse shaping is 25% roll-off raised-cosine, yielding roughly a 

3.84×(1+25%) ≈ 5 MHz channel bandwidth. The FE sampling rate is 4×3.84=15.36 MHz. The 

LO mismatch levels are 3% in amplitude and 3º in phase, and the non-ideal channels are 

modeled as HI(z) = 0.98 + 0.02z-1 and HQ(z) = 1.0 – 0.005z-1. The analog FE has frequency-
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dependent I/Q imbalances, with the resulting image attenuation smoothly varying between 25 

and 35 dB, as shown in Fig. 45. 

 

Figure 45 IRR before/after Compensation under Low Mismatch Level 

 

Figure 46 Convergence under Low Mismatch Level 
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Fig. 45 shows the achieved IRR before and after compensation with a 3-tap adaptive 

filter. In Fig. 46, the averaged IRR over the image frequency band (0.6–5.4 MHz) vs. sample 

index is plotted. 

6.2.2 High Mismatch Level Simulation 

 

Figure 47 Frequency Responses of I and Q Branches 
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which are reasonable expectation in practice. The analog front-end limits the image attenuation 

to the range of 22–30dB, as shown in Fig. 48. 

Fig. 48 shows the achieved IRR before and after compensation. The IRR over the image 

frequency band (1.2–10.8 MHz) vs. sample index is given in Fig. 49. Fig. 50 plots the signal 

spectrum before and after compensation using the OBA-C I/Q imbalance compensator. Fig. 51 

plots the magnitude and phase of the achieved filter coefficients W(f) vs. frequency (1.2–

10.8MHz) using a 3-tap compensator. 

 

Figure 48 IRR before/after Compensation under High Mismatch Level 
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Figure 49 Convergence under High Mismatch Level 

 

 

Figure 50 Frequency Spectrum before/after Compensation 
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Figure 51 W(f) vs. Frequency at Image Band (1.2–10.8MHz) with a 3-tap Compensator 

6.2.3 Discussion 
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to a solution which is closer to the ideal solutiont obtained from (6.12), compared to the 

algorithm in [89]. 

It is worthwhile to mention that the convergence curves for OBA-C in Figs 46 and 49 are 

noisier than the algorithm in [89]. However, the noise is always pointing to a higher IRR value. 

The potential reason is illustrated as follows. The technique in [89] uses a fixed step size, ending 

with a smooth convergence curve. The OBA-C employs the optimal adaptation, which 

theoretically restores the circularity of the mismatched signal in one iteration. The result is that 

the convergence curve oscillates to reach a higher IRR value, theoretically, infinity. However, 

the limitation of the performance has been decided by practical conditions and cannot be 

exceeded. That is why the oscillation always directs up to an extremely high IRR value and then 

drops back to the limitation value. It is shown that while the IRR of the algorithm in [89] 

degrades as the I/Q mismatch level increases, the IRR value of the OBA-C stays almost the same 

regardless of the mismatch levels. Therefore, an additional advantage of OBA-C is its robustness 

against I/Q imbalance levels. 

6.3 Implementation Issues 

Implementation issues are discussed in this section, including the optional scaling factor, 

the block shifting and block size, and the number of filter taps. The simulations are set up the 

same as in Section 6.2. All the simulation results are averaged over 1000 Monte Carlo runs. 
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6.3.1 Optional Scaling Factor 

In practice, it is desirable to introduce one additional adaptation parameter γ  for the final 

weight update based on two considerations. First, since the higher order derivative term in (5.25) 

is dropped in our formulation, an additional adaptation parameter can help to ensure reliable 

convergence. Second, the iterative update of the filter coefficient is formulated in a noise free 

scenario. A mechanism should be available to adjust w∆ , so that the algorithm can compensate 

for the effect of the additive noise in practical receivers. 

To study the scaling factor γ , simulations are carried out with a 3-tap OBA-C 

compensator. A block with size L = 18 is used, and the input SNR is assumed to be 30dB. Fig. 

52 plots the convergence curve of the averaged IRR over the image band (1.2–10.8 MHz) using 

different values of γ . It illustrates that when γ  = 5, OBA-C diverges; when γ  = 0.5, 1, and 2, 

the algorithm converges within 4000 samples; when γ  = 0.2, more samples are required for the 

OBA-C to achieve steady convergence. Fig. 53 plots the achieved IRR averaged over image 

band by OBA-C with different scaling factors for both mismatch levels. Fig. 54 illustrates the 

required iterations for OBA-C to achieve convergence with different scaling factors. From our 

experiments, the OBA-C diverges when 5≥γ . Within the convergence range, a smaller γ  

yields slower convergence but better image rejection performance, while a larger γ  yields faster 

convergence but a lower image rejection ratio. It is found in our simulation that the optimal value 

of γ  varies according to different signals and systems. In general, OBA-C has the capability to 

achieve convergence over a certain range of γ  (approximately 0 < γ  ≤ 4). From our intensive 

experiments, the range of 0.5–1 is recommended. 
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Figure 52 Convergence Curve of IRR over Image Band Using Different Scaling Factors 

 

Figure 53 Achieved IRR Averaged over Image Band by OBA-C with Different Scaling 
Factors 
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Figure 54 Required Iterations for OBA-C to Achieve Convergence with Different Scaling 
Factors 
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size degrades the performance. From our simulations, the OBA-C diverges when 3<L . The 

average IRR over image band vs. different block sizes is plotted in Fig. 55. It confirms that a 

larger block size improves the image rejection performance. Fig. 56 plots the required iterations 

of the OBA-C algorithm vs. different block sizes. With a larger block size, the OBA-C requires 

fewer iterations to converge and yields smoother convergence curve. 

On the other hand, it is very important that the proposed technique keeps computational 

efficient while satisfying certain performance requirements. In this regard, a smaller block size is 

preferred since it yields lower computational complexity than a bigger block size.  

Figs 55 and 56 also indicate that when OBA-C converges, there are limitations for the 

achieved IRR and the number of required iterations. In other words, even if L is further increased 

beyond 50, the achieved IRR will not go out of boundary and the required iterations hardly 

further decreases. Considering both the computational complexity and the adaptation 

performance, a block size within the rage of 10–20 is recommended. 
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Figure 55 Achieved IRR Averaged over Image Band by OBA-C with Different Block Sizes 

 

Figure 56 Required Iterations for OBA-C to Achieve Convergence with Different Block 
Sizes 
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6.3.3 Number of Adaptive Filter Taps 

In this subsection, the selection of the OBA-C filter taps is investigated. The OBA-C is 

tested using a compensation filter with different taps and the results are compared to those 

obtained using the algorithm in [89]. 

 

Figure 57 Simulation Results with a 1-tap Compensator 
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demonstrates the improvement in the convergence speed of the OBA-C method is surprisingly 

significant, especially for the 1-tap compensator. The 1-tap compensator reduces the required 

iterations for convergence from 8,000 to 100, while the 3-tap filter reduces the iteration number 

from 14,000 to 4,000 as shown in 6.2.2. Along with the faster convergence, the 1-tap 

compensator improves the IRR value from 44.5dB to 49.2dB. 

Figs 58 and 59 plot the achieved IRR and required iterations vs. filter tap numbers, 

respectively. From Fig. 58, it is shown that the peak IRR appears with a 3-tap compensator. The 

reason is that the ideal solution of this compensation system can be best represented by a 2nd-

order (3-tap) model. Therefore, with more taps, the system is overdetermined, which degrades 

the achieved image rejection performance. Fig. 59 indicates that the OBA-C method converge 

slowest with a 2-tap filter. In general, the trend is that the OBA-C needs more iterations with a 

tap number which yields better image rejection performance. 
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Figure 58 Achieved IRR Averaged over Image Band by OBA-C with Different Numbers of 
Taps 

 

Figure 59 Required Iterations for OBA-C to Achieve Convergence with Different Numbers 
of Taps 
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∑
=

−=
I

i
i lkzaku

0
)()(  (6.17) 

where ia  is the filter coefficient. 

Then the complimentary autocorrelation function of )(ku  is computed as follows, 

})()({)}()({)(
0 0

)( ∑∑
= =

∆−−−=∆−=∆
I

m

I

n
nmku nkzmkzaaEkukuEC   

})()({
0 0
∑∑
= =

∆−−−=
I

m

I

n
nm nkzmkzEaa  (6.18) 

Since )(kz  is the baseband equivalent of channel input, which is proper and circular, the 

following is satisfied, 

.,,,0)}()({ ∆∀=∆−−− nmnkzmkzE  (6.19) 

Therefore, (6.18) is equal to 0 for any ∆. The conclusion is that the baseband equivalent 

of the channel output )(ku  is proper and circular as well. 

6.4.2 Frequency and Phase Offset 

The baseband equivalent of an observed signal, )(kv , distorted by frequency and phase 

offsets is formulated as follows 

)()( )( kzekv kTj θω ∆+⋅∆⋅=  (6.20) 

where ω∆  and θ∆  are the frequency and phase offset parameters, respectively.  

Then the complimentary autocorrelation function of )(kv  is computed as follows, 

)}()({)}()({)( ]2)2([
)( ∆−=∆−=∆ ∆+∆−⋅∆⋅ kzkzeEkvkvEC Tkj

kv
θω
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∆∀=∆−= ∆+∆−⋅∆⋅ ,0)}()({]2)2([ kzkzEe Tkj θω . (6.21) 

Here goes the conclusion that the baseband equivalent of the channel output )(kv  is 

proper and circular under frequency and phase offsets. 

6.4.3 Additive Noise 

When the OBA-C method is formulated in 5.2, the effect of the additive noise is ignored. 

If an accurate I/Q downconversion model including complex white Gaussian noise is considered, 

adjustment should be made for the OBA-C formulation in 5.2. The noise discussed here can arise 

everywhere during the analog processing procedure at the receiver side, which starts from the 

antenna where the signal is received and ends right before the ADC. It is clear that the I/Q 

mismatch problems are caused by the same analog process. However, any different individual 

noise effect on the I or Q branch is discussed in Section 6.1. Only the common effect to both I 

and Q branches is considered in this subsection. 

With additive noise, the input signal to the imbalance compensation model, x(k), is 

modified to )(' kx , as  

)()()(' knkxkx +=  (6.22) 

where n(k) is the noise signal. 

The formulated recovered signal y(k) in (5.22) is modified as 

)]()()[()()()(')()(')(' kkkknkxkkkxky T*T ∗∗ +++=+= nxwxw  

)]()()([)]()()([ kkknkkkx TT ∗∗ +++= nwxw  (6.23) 

where  
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TNknknknk )]1(),...,1(),([)( +−−=n  (6.24) 

Substituting (5.22) into (6.23), )(' ky  is expressed as 

)]()()([)()(' kkknkyky T ∗++= nw  (6.25) 

Thus, the complementary autocorrelation function of )1(' +ky  at 0=∆ , is derived as, 

})])1()1([)1()1({()}1('{)0( 22
)1(' ++++++=+= ∗

+ kkknkyEkyEC T
ky nw  

)}1({( 2 += kyE  

)]}1()1()1()[1({ ++++++ ∗ kkknkyE T nw  

})]1()1()1({[ 2+++++ ∗ kkknE T nw  (6.26) 

The basic objective in the noise scenario should be the same as the noise free scenario, 

i.e., to restore the circularity of the noise-free output of the compensator at next iteration, 

0)}1({( 2 =+kyE  (6.27) 

Generally, the noise n(k) is uncorrelated with y(k), so that 

0)]}1()1()1()[1({ =+++++ ∗ kkknkyE T nw  (6.28) 

The third term in (6.26), })]1()1()1({[ 2++++ ∗ kkknE T nw  is more complicated than the 

first two terms. Thus, it is being further expanded as follows, 

})]1()1()1({[ 2++++ ∗ kkknE T nw  

)}1({ 2 += knE  

)]}1()1()1(2{ ++++ ∗ kkknE T nw  

+ })]1()1({[ 2++ ∗ kkE T nw  (6.29) 
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n(k) is complex white Gaussian noise, and it is assumed to be proper, and thus circular as 

well. Therefore, the first and third terms in (6.29) are both equal to 0, as follows, 

0)}1({ 2 =+knE  (6.30) 

0})]1()1({[ 2 =++ ∗ kkE T nw  (6.31) 

The second term in (6.29) becomes, 

)]}1()1()1(2{)]}1()1()1(2{ 1 +++=+++ ∗∗ knknkwEkkknE T nw  

)]}1()1({)1(2 1 ++⋅+⋅= ∗ knknEkw  (6.32) 

where )]}1()1({ ++ ∗ knknE  is the noise power. 

Therefore, combining (6.26)–(6.32), the following is obtained, 

)]}1()1({)1(2)0( 1)1(' ++⋅+⋅= ∗
+ knknEkwC ky  (6.33) 

However, practically, it is unrealistic to measure the noise power at either transmitter or 

receiver side. When the SNR is within a certain range, the derivation in 5.2 still works as an 

approximation of the solution.  

Table 9 and Fig. 60 compare the averaged IRR’s over the image frequency band using the 

OBA-C and the algorithm in [89], under different SNR levels. Both the high and low mismatch 

levels are simulated. It is worthwhile to mention that the I/Q imbalance becomes a problem only 

if the image interference is above the noise floor. In other words, a reasonable SNR value for 

simulation should be larger than the IRR value of the FE. Since the image attenuation of the FE 

in practical receivers is within the range of 20–40 dB, the SNR range of 25–50dB is simulated. 
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Table 9 Averaged IRR (dB) over Image Band vs. SNR 

 

SNR 

(dB) 

OBA-C Anttila, Valkama, and 
Renfors [89] 

High 
Mismatch 

Level 

Low 
Mismatch 

Level 

High 
Mismatch 

Level 

Low 
Mismatch 

Level 

25 53.4 54.9 47.8 54.5 

30 56.5 57.8 48.2 55.2 

35 59.7 60.8 48.2 55.3 

40 63.4 64.5 48.2 55.3 

45 65.0 66.4 48.2 55.3 

50 65.5 67.2 48.2 55.5 

Infinity 65.9 67.9 48.2 55.8 

 

Figure 60 IRR vs. SNR for both High and Low Mismatch Levels 
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Table 9 and Fig. 60 further confirm the superior performance of the OBA-C. The result 

indicates that for both mismatch levels, OBA-C demonstrates significant improvement in image 

rejection performance compared to the approach in [89]. 

Table 9 and Fig. 60 show that the additive noise affects the image rejection performance of 

the OBA-C. However, the performance limit of the OBA-C algorithm, measured by the IRR 

value in the noise free (SNR = infinity) scenario, is higher than that of the method in [89]. Also, 

within the reasonable SNR range for practical receivers (25–50dB), OBA-C always achieves a 

higher IRR value compared to the algorithm in [89]. 

6.5 Conclusion 

In this chapter, the performance of the OBA-C I/Q imbalance compensation technique is 

tested using computer simulation, and compared to a recently proposed algorithm. 

Implementation issues and practical impairments are also discussed and analyzed. Computer 

simulation shows that the proposed OBA-C technique demonstrates fast convergence, while 

maintaining excellent IRR over a wide signal bandwidth. In addition, it is concluded that OBA-C 

is resistant to different mismatch levels, and robust to RF impairments. Therefore, OBA-C is a 

promising frequency-dependent I/Q mismatch compensation solution for practical radio receiver 

design. 
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CHAPTER 7 EFFECT OF SIGNALS’ PROBABILISTIC 
DISTRIBUTIONS ON PERFORMANCE OF ADAPTIVE 

INTERFERENCE CANCELING ALGORITHMS 

Achieving particular performance requirements in noise rejection is a major design 

criterion for wireless receivers. Therefore, an appropriate choice of noise suppression algorithms 

which can satisfy the ever-increasing demand for better performance on one side and fit different 

types of waveforms on the other side is crucial to wireless receiver design. In recent years, 

research on adaptive filter based, both LMS and ICA noise cancellation techniques continue to 

receive significant attention [104]–[109]. Traditionally, the LMS algorithm based on second-

order decorrelation has been widely applied in adaptive noise cancellation problems [104]. In 

recent years, ICA-based algorithm utilizing higher order statistics are frequently adopted to 

improve the interference rejection performance [105]–[109]. However, most of the reported 

works on ICA-based noise canceling approaches are limited to real-world acoustic echo 

cancelling applications [106]–[109]. 

In this chapter, the performance of the LMS- and ICA-based approaches with different 

signals’ probabilistic distributions is studied [110]. It is observed that ICA based approach works 

better than LMS for super-Gaussian signals, which is the reason that most reported ICA-based 

noise reduction works focus on super-Gaussian analog signals, including the speech, music vocal 

and audio signals. In contract, for sub-Gaussian and Gaussian signals, LMS is superior to ICA 

due to its stable high interference rejection ratio and its computational efficiency. The 

performance of these two algorithms is evaluated using computer simulations for signals with 

different distributions. The obtained results lead to the conclusion that if prior information of the 
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signal’s probabilistic distribution is available, a smart choice between the LMS- and ICA-based 

approaches can be made to achieve better noise rejection performance. 

This chapter is organized as follows. Section 7.1 gives the typical interference cancelling 

system model. The conventional LMS learning rule is given in 7.2. An overview of different 

ICA-based interference cancelling methods and their essential relations are presented in 7.3. 

Section 7.4 discusses the effect of signals' probabilistic distributions on the performance of 

adaptive interference canceling algorithms. Simulation results are given in 7.5, followed by 

conclusion in 7.6. 

7.1 Interference Cancellation Model 

Signal 
Source

Adaptive 
filter w

Noise 
Source

System
Output

u

Primary 
Input

Reference 
Input

+
-

x1

n0

s

n1

x2

 

Figure 61 Adaptive Interference Cancellation Model 

The typical adaptive interference cancelling system is given in Fig. 61. The primary 

sensor receives a message signal s  corrupted by an additive noise 1n . The obtained primary 

input signal 1x  is 1ns + . Another sensor receives a noise signal 0n , which provides the reference 

input signal 2x . The assumption is made that s  is uncorrelated with 0n  and 1n , and 1n  is 
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correlated with 0n  as 01 *nhn = . The objective is to get a system output u which is the best 

estimate of s . 

7.2 LMS Learning Rule 

The most popular algorithm for noise cancellation is the LMS algorithm [104]. It 

removes noise components from the primary input signal based on the second-order statistics. 

Assume )(kw  to be the weight vector of the adaptive filter at time index k, given by 

T
N kwkwkwk )](),...(),([)( 21=w  (7.1) 

where N is the number of the adaptive filter coefficients.  

The system output u(k) can be expressed as  

)()()()( 21 kkkxku xw ⋅−=  (7.2) 

where 

TNkxkxkxk )]1(),...1(),([)( 2222 +−−=x  (7.3) 

Adjusting or adapting the filter to minimize the total output power forces the output u(k) 

to be a best estimate of the signal s(k) at a LMS sense. The update formula for )(kw∆  can be 

derived using the MSE function )(MSE kf , 

)(
)()( MSE

k
kfk

w
w

∂
∂
⋅−=∆ µ  (7.4) 

)()(1)(MSE kk
N

kf H uu⋅≈  (7.5) 

where µ is the fixed convergence factor and )(ku  is the vector containing )ku(  and the previous 

N – 1 system outputs, given by 
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TNkukukuk )]1(),...1(),([)( +−−=u  (7.6) 

7.3 ICA Learning Rule 

ICA-based noise cancelling algorithms, in general, have received lots of research 

attention in the past decade [105]–[109]. The estimation criteria of the ICA model can be 

different, including cumulants [105], entropy [106], likelihood [107], mutual information [108], 

and nonlinear decorrelation [109]. In fact, all of these estimation criteria can be considered as 

different versions of the same general concept. 

Noise cancellation can be considered as a typical BSS problem. The objective is to 

retrieve the desired signal from the received signals. The received signal vector can be obtained 

as follows, 
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1
n
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x
x Th

 (7.7) 

For simplicity, assume that the channels from the signal source to the primary sensor and 

from the noise source to the reference sensor are both equal to 1, as shown in (7.7). The ICA 

learning rule separate the independent components using a demixing matrix B, formulated as 

follows, 

xBy ⋅=  (7.8) 

where Tyy ],[ 21=y  are the recovered independent components, and Txx ],[ 21=x  are the two 

received mixed signals as shown in Fig. 61.  

The mutual information of this system is defined as 

)()()(),( 2121 yHyHyHyyI −+=  (7.9) 
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The constraint is made that y1 and y2 are uncorrelated and of unit variance. Thus, the last 

term on the right-hand side, )(yH  is constant and its value does not rely on B. In this way, (7.9) 

indicates that minimizing mutual information is equivalent to minimizing the individual 

entropies )( 1yH  and )( 2yH . Entropy is maximized by a Gaussian distribution, thus 

minimization of mutual information means maximizing the sum of the nongaussianities of the 

estimated components. That is the connection between the mutual information and entropy. 

Alternatively, approximating mutual information can be done by estimating the densities 

of the components using the log-density approximations. Thus, (7.9) can be reformulated as 

)()}({log)()()(),(
2

1
2121 yy HypEHyHyHyyI

i
ii −−=−+= ∑

=
 (7.10) 

where )(⋅ip  denotes probability density function (pdf). Therefore, a formula of mutual 

information essentially equivalent to the Maximum Likelihood (ML) estimator is obtained.  

The relationship between the above mentioned criteria and the cumulant-based criterion 

is revealed by approximating negentropy using cumulants [111], as follows, 

223 )(
48
1}{

12
1)( ykurtyEyJ +≈  (7.11) 

To see the connection to nonlinear decorreltation, [112] indicates that the natural gradient 

methods for ML estimation has the same form as the nonlinear decorrelation algorithm. Thus, the 

ML estimator gives a thought for connecting ICA and LMS techniques. In fact, introducing 

nonlinearity to the LMS algorithm has been studied by many researchers [106], [109], [112]. 
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7.4 Effects of pdf on the Choice of Cost Functions 

Interference cancellation is a special case of the general BSS problem. Since one 

independent component is already known as the received reference signal 0n , only the other 

independent component s is of interest. The recovered signal y1 can be formulated as 

[ ] 







=

2

1
12111 *

x
x

y bb  (7.12) 

Upon adaptation, both LMS and ICA should yield the estimates of the message signal s, 

so 1y is actually proportional to the LMS output u,  

)( 211 xw ⋅−⋅=⋅= xkuky  (7.13) 

From (7.12) and (7.13), the convergence of the ICA method can be achieved by forcing 

11b to be the scaling coefficient k and 12b  to become wk− . It is obvious that k does not affect the 

final SNR, so only the coefficient vector w  or the ratio 1112 / bb is interested. 

The update equation for ICA can be expressed by maximazing the negentropy of y1 [106], 

as follows, 

))}(()({
)(
))(()( 12

1 kygkE
k
kyJk ⋅⋅−=

∂
∂

∝∆ x
w

w γ  (7.14) 

2
11 )}]({)}({[)( vGEyGEyJ −=  (7.15) 

where G(.) is some nonlinear function, and the score function g(.) is the derivative of G(.). γ is a 

constant, and v is a Gaussian variable of the same mean and variance as y1. 

From a statistical point of view, the choice from different ICA estimation criteria is now 

reduced to the choice of the nonquadratic function G(.) or g(.), which provide information on the 

higher order statistics. As can been seen from (7.10), the introduced nonlinearity G(.) can be 



 126 

chosen as some form of the pdf. Theoretically, the nonlinear g(.) or G(.) can be trained for any 

signal with any distribution. Published works [111], [112] have presented the approaches to 

construct one universal estimator G(.) for all signals.  

Many reported works have indicated ICA is nonrobust for sub-Gaussian signals. [113] 

conjectures that unwanted higher entropy solutions may be achieved only when the inputs are 

sub-Gaussian signals. [114] explains it through convergence of the nonlinear subspace rule. It 

presents that the nonlinearity can be chosen as the simple odd polynomial. While yyg =)(  never 

gives asymptotic stability, and ,...)7,5()( == ααyyg  are computationally complicated and 

vulnerable to outliers, the best choice, cubic function 3)( yyg = , leads to asymptotic stability if 

and only if the density is super-Gaussian. 

The research work in [111] discusses the robustness of the ICA method through the 

nonquadratic function G(.). Section 14.3.2 in [111] indicates that if G(.) grows fast with |y|, the 

estimator becomes highly nonrobust against outliers. From the ML view of point, the optimal G(.) 

is different according to signal’s pdf. Roughly for sub-Gaussian densities, the optimal function 

G(.) is a function that grows faster than quadratically; for super-Gaussian densities,  G(.) grows 

slower than quadratically. Thus, the optimal choice of G(.) for sub-Gaussian signals will be 

highly nonrobust estimator, which can be completely ruined by a couple of bad outliers. In this 

scenario, LMS can be applied as an alternative algorithm for sub-Gaussian signals. 

The analysis above is useful in cases where priori information on the distributions of the 

independent components is available. If prior gaussianity of the desired signal is available, a 

better choice between LMS and ICA based approaches can be made. For sub-Gaussian signals, it 

is not guaranteed to get robust optimization value when the typical ICA-based algorithm is 
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applied, thus the LMS approach works better. Gaussian signals can be described by only the first 

and second-order statistics without higher order statistics, and thus LMS is adequate. 

Furthermore, ICA requires more computations than LMS, so LMS is preferred. Only for super-

Gaussian signals, ICA-based approach is superior to LMS due to its higher order statistics. 

7.5 Simulations 

In this section, the performance of the LMS and ICA algorithms are compared using 

signals with different distributions. The performance measurement is the SNR of the output u or 

y1, which is defined as follows, 

>−<
><

= 2

2

))()((
))((SNR

ksku
ks

 (7.16) 

The transfer function h from the noise source to the primary input is 9th order and 

generated randomly by Matlab function rand(1,10). The noise 0n  is a zero-mean white Gaussian 

noise. Laplacian and uniform distributed signals are artificially generated as super-Gaussian and 

sub-Gaussian message signals, respectively. The number of the adaptive filter taps is set to be 10 

and tanh(.) is chosen as g(.). Step sizes are adjusted so that LMS and ICA have the same 

convergence speeds. All results shown are averaged over 1000 Monte Carlo simulation runs. 
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Figure 62 Convergence Curve for Super-Gaussian Signal 

 

Figure 63 Convergence Curve for Gaussian Signal 
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Figure 64 Convergence Curve for Sub-Gaussian Signal 

Figs 62–64 plot the convergence curves of ICA and LMS based algorithms for super-

Gaussian, Gaussian and sub-Gaussian signals, respectively. Fig. 62 shows that the performance 

of the ICA-based approach is better than LMS for super-Gaussian signals. The potential reason is 

that there exist components in the primary input which involve higher order statistics of the 

reference signal. These noise components can be cancelled by the ICA-based learning rule. Fig. 

63 illustrates that for Gaussian signals, the ICA-based approach provides comparable or slightly 

worse SNR value than LMS. That is because Gaussian signals can be described by only the first 

and second-order statistics, so the ICA-based approach which utilizes higher order statistics does 

not have any advantage over the LMS algorithm. For sub-Gaussian signal simulation shown in 

Fig. 64, while LMS achieves higher SNR, the performance of the ICA-based approach degrades 

because the robust nonlinearity function G(.) is not the optimal choice according to the pdf of the 

signal. 
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7.6 Conclusion 

In this chapter, the effect of signals’ probabilistic distributions on the performance of 

adaptive noise canceling algorithms is studied. Both theoretical analysis and computer simulation 

lead to the conclusion that the ICA-based approach yields higher SNR than the conventional 

LMS algorithm for super-Gaussian signals and LMS performs better for other signals with 

higher computational efficiency. Therefore, signal distribution can be a universal criterion to 

choose the better adaptive noise cancellation algorithm between LMS and ICA. 
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CHAPTER 8 CONTRIBUTIONS AND FUTURE WORKS 

8.1 Major Contributions 

An outline of the contributions is given below. 

Chapter 2 derives a unified block based approach for generating optimal complex 

adaptive FIR filtering algorithms. The general formulation leads to two classes of adaptive 

algorithms, CBCI-LMS and CBC-LMS, both based on the block adaptation, complex conjugate 

gradients, and complex Taylor series expansion. Also, the computational complexity and the 

matrix inversion lemma are addressed. 

In Chapter 3, the proposed CBCI-LMS and CBC-LMS are applied to channel 

identification and equalization in wireless communications. The implementation issues, 

including the block shifting technique, block size selection, search dimension parameter and an 

optional scaling factor, are discussed. Simulation results confirm the significant improvement in 

the convergence speed of the proposed algorithms, while maintaining excellent accuracy. 

In Chapter 4, the CBCI-LMS and CBC-LMS are applied to adaptive array beamforming. 

The simulation results show that the proposed methods exhibit improved convergence speed and 

accuracy, irrespective of SIR, number of antenna elements, and user modulation schemes. 

Chapter 5 proposes a novel FIR filtering algorithm, OBA-C, to restore the circularity of a 

distorted complex signal. The proposed technique exploits the concept of circularity to guide the 

update direction for the filter weights. In addition, it uses Taylor series expansion to dynamically 

adjust the coefficients of the adaptive filter at each iteration. The OBA-C is a totally blind 

processing algorithm and it fully exploits the degrees of freedom of the optimization space to 

improve performance. 
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Chapter 6 applies the OBA-C method to compensate for frequency-dependent I/Q 

imbalance. Computer simulations show that the OBA-C has attractive properties in terms of the 

image rejection performance and the convergence speed, as compared to the existing method. 

Other desirable features of the OBA-C technique include the simplicity of implementation, the 

ability to support multimode, multiband radio systems, and the robustness against different 

mismatch levels and RF impairments. 

Chapter 7 studies the performance of LMS- and ICA-based approaches with different 

signals’ probabilistic distributions. It is observed that ICA based approach works better for 

super-Gaussian signals while LMS is preferable for sub-Gaussian signals. The obtained results 

lead to the conclusion that if prior information of the signal’s probabilistic distribution is 

available, an appropriate choice between LMS- and ICA-based approaches can be made to 

achieve better noise rejection performance. 

The methodology adopted in this research work is consistent with current trend in the 

area of wireless receiver design. The proposed schemes are helpful towards the realization of 

SDR, in which the hardware complexity can be significantly reduced without performance 

degradation.  

8.2 Future Research Directions 

The research work presented in this dissertation can be extended in several directions. 
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8.2.1 Complex Block Conjugate LMS Algorithm for Underdetermined Systems 

The conjugate gradient method continues to be a versatile tool in various adaptive 

filtering applications, due to its unique tradeoff between convergence speed and computational 

complexity. In Chapter Two, the CBCI-LMS and the CBC-LMS algorithms have been developed.  

One interesting yet challenging future research area is the feasibility of the proposed 

algorithms for underdetermined optimization systems. The problem of underdetermined system 

arises when the number of antenna elements is less than the actual number of users. For example, 

consider applying the adaptive beamforming technology presented in Chapter 4 to mobile 

communications. In the downlink of a cellular system, it is impossible to know in advance the 

exact number of interferers, especially when the number is not fixed in practice. Also, installing 

a large set of antenna elements in mobile units is not practical due to the limited size and high 

cost. Therefore, it is highly desirable to use fewer antennas than the number of user signals.  

8.2.2 Complex Block Adaptive I/Q Compensation Scheme for Wireless Transmitters 

The I/Q imbalance happens in the upconversion at the transmitter [115] and the down-

conversion at the receiver. These mismatches are unavoidable in practical implementation, and 

limit attenuation of the mirror frequencies. In Chapter 5, the OBA-C algorithm has been 

developed to correct the I/Q imbalance at the receiver by utilizing the circularity nature of most 

communication signals. Similarly, a circularity based adaptive filtering algorithm can be 

developed to compensate for the I/Q imbalance at the wireless transmitter. 
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8.2.3 Effect of Complex Signals’ pdf on Performance of Adaptive Interference Canceling 

Algorithms 

Chapter 7 studies the performance of two adaptive noise cancellation approaches with 

different signals’ probabilistic distributions for real-valued system. In modern wireless 

communications, the complex LMS algorithm [57]–[59] and complex ICA algorithm [17], [32] 

have been widely used. The effect of complex signals’ pdf on the performance of adaptive 

interference cancelling algorithms is a useful yet challenging future research topic. Similarities 

are expected between the real-valued and complex-valued systems. 

8.2.4 Adaptive Interference Canceling Algorithms for Correlated Interference 

The work in Chapter 7 can be extended to examine the performance of different 

algorithms when the desired signal is correlated with the interference. Serious study on this topic 

is recommended for different orders (second-order, forth-order, etc.) of correlation between the 

desired signal and the interference. 

8.2.5 Hybrid ICA-LMS Algorithm 

The performance of the LMS and ICA approaches with different signals’ probabilistic 

distributions is studied in Chapter 7, which indicates that the ICA based approach works better 

for super-Gaussian signals, while LMS based method is preferable for sub-Gaussian signals. 

Considering the same problem from a different perspective, the performance of the LMS-

based algorithm starts deteriorating if the desired signal leaks to the reference sensor. In order to 
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remove this limitation, the ICA-based approach is a promising alternative solution to help 

achieve convergence. 

On the other hand, ICA is a widely used BSS method to separate a set of multivariate 

signals into independent components. Instead of the second-order estimator applied in LMS, ICA 

employs higher order statistics to provide more accurate solutions in most applications. However, 

it has the drawback of high computational complexity and the issue of order, sign and energy 

ambiguities. Traditionally, the ambiguity problems can be solved using sophisticate algorithms, 

which further increases the overall computational complexity. If a sequence of training data is 

available at the beginning phase of the adaptation process, the ambiguity problems can be solved 

by some computational efficient supervised algorithms (e.g., LMS). 

Intuitively, the idea of a hybrid LMS-ICA technique is generated, which has the potential 

advantages of both LMS and ICA, providing an accurate and efficient solution for many wireless 

applications. There is a great possibility that the hybrid ICA-LMS algorithm has desirable 

features in convergence speed as well as accuracy, especially in a high interference scenario. 

Applying this method would significantly improve system capacity and reduce network cost. The 

preliminary formulation of the LMS-ICA algorithm is developed as follows, 

)(kw  is defined as the weight vector of the adaptive filter at time index k, given by 

T
N kwkwkwk )](),...(),([)( 21=w  (8.1) 

The update function of )(kw  based on LMS and ICA methods are given as follows, 

respectively, 

)(
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)(
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where fMSE(k) and fICA(k) are the MSE function and the ICA cost function. fICA(k) can be the 

equation of kurtosis [101], negentropy [102], or some other criteria. )(LMS kµ  and )(ICA kµ  are 

the step sizes for the LMS and ICA methods, respectively, both of which can be time invariant or 

time variant. 

The suggested formula to update the adaptive filter coefficients is given as, 
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More research efforts are needed to find the best choice for the hybrid LMS-ICA cost 

function. Also, the selection of )(LMS kµ  and )(ICA kµ  needs to be seriously studied. 
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APPENDIX: MATRIX INVERSION LEMMA 

For any invertible NN   × matrices A and B, (AB)–1 = B–1A–1. More generally, if A1, 

A2, ..., Ak are invertible NN   ×  matrices, then (A1A2⋯Ak–1Ak)–1 = Ak
–1Ak-1

–1⋯A2
–1A1

–1. 

The autocorrelation matrix )(kR  is defined as, 

)()()( kkk H XXR =  (A.1) 

Since )(kQ  and )(kR  are both NN   ×  matrices, the following term in (2.49) is 

obtained, 

-1-1 )]()()([)]()()()([ kkkkkkk HHH QRQQXXQ ⋅⋅=⋅⋅  
-111 ))(()()( kkk HQRQ ⋅⋅= −−  (A.2) 

It is worthwhile to mention that )(kQ  is a diagonal matrix, so the matrix inversion of 

)(kQ  is affordable.  

The matrix inversion lemma [54] can be applied to invert an NN   ×  matrix )(kR  at the 

kth iteration, provided it contains the )1(  )1( −×− NN  section of the matrix at the (k – 1)th 

iteration, i.e., )1( −kR . The description of the lemma proceeds as follows. 

The NN x  matrix )(kR  is partitioned into sub-matrices as follows, 









=

RkR
kRkRk H

)(
)()()(

12

1211R  (A.3) 

where )(11 kR is a scalar, )(12 kR is a )1(  1 −× N row vector, and R is a )1(  )1( −×− NN square 

matrix. Since )1( −kR  is also known, it is partitioned in the following manner, 
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

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where )1(ˆ
12 −kR  is a 1  )1( ×−N  column vector, )1(ˆ

22 −kR  is a scalar, and R is a matrix defined 

in (A.3). 

The lemma recursively computes the matrix inverse, which means it computes )(1 k−R  

based on )1(1 −− kR  given by 
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where 22v is a scalar, 12v is a 1  )1( ×−N  vector, and 11v is a )1(  )1( −×− NN  matrix.  

Since )(kR , )1( −kR , and )1(1 −− kR  in (A.3), (A.4), and (A.5), are already known, the 

matrix inversion lemma utilizes this information to compute )(1 k−R , which can be expressed as 
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The )1(  )1( −×− NN  matrix F is computed using the following lemma, 

1
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where 

1
1112

1
12 )]()( )([ −−

−= kRkRRkRC
H

 (A.11) 

1
121211

1
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−−= HvkRIvR  (A.12) 

Applying another matrix inversion lemma, the inverse in (A.12) can be calculated as 

follows, 

)]}1(ˆ1/[)1(ˆ{ 1212121211
1

−−−+=
−

kRvvkRIvR HH  (A.13) 

In this manner, (A.6)–(A.13) can be used to compute the inverse of the matrix )(kR , 

which significantly reduces the computational complexity.  
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