You are here

The effect of carbon nanotube/organic semiconductor interfacial area on the performance of organic transistors

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
Organic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which results in low charge injection from the metal electrodes to OSC. In order to overcome the challenge of low charge injection, carbon nanotubes (CNTs) have been suggested as a promising electrode material for organic electronic devices. In this dissertation, we study the effect of carbon nanotube (CNT) density in CNT electrodes on the performance of organic field effect transistor (OFETs). The devices were fabricated by thermal evaporation of pentacene on the Pd/single walled CNT (SWCNT) electrodes where SWCNTs of different density (0-30/um) were aligned on Pd using dielectrophoresis (DEP) and cut via oxygen plasma etching to keep the length of nanotube short compared to the channel length. From the electronic transport measurements of 40 devices, we show that the average saturation mobility of the devices increased from 0.02 for zero SWCNT to 0.06, 0.13 and 0.19 cm2/Vs for low (1-5 /(&)#181;m), medium (10-15 /(&)#181;m) and high (25-30 /(&)#181;m) SWCNT density in the electrodes, respectively. The increase is three, six and nine times for low, medium and high density SWCNTs in the electrode compared to the devices that did not contain any SWCNT. In addition, the current on-off ratio and on-current of the devices are increased up to 40 times and 20 times with increasing SWCNT density in the electrodes. Our study shows that although a few nanotubes in the electrode can improve the OFET device performance, significant improvement can be achieved by maximizing SWCNT/OSC interfacial area. The improved OFET performance can be explained due to a reduced barrier height of SWCNT/pentacene interface compared to metal/pentacene interface which provides more efficient charge injection pathways with increased SWCNT/pentacene interfacial area.
Title: The effect of carbon nanotube/organic semiconductor interfacial area on the performance of organic transistors.
20 views
12 downloads
Name(s): Kang, Narae, Author
Khondaker, Saiful, Committee Chair
Leuenberger, Michael, Committee Member
Zhai, Lei, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Organic field-effect transistors (OFETs) have attracted tremendous attention due to their flexibility, transparency, easy processiblity and low cost of fabrication. High-performance OFETs are required for their potential applications in the organic electronic devices such as flexible display, integrated circuit, and radiofrequency identification tags. One of the major limiting factors in fabricating high-performance OFET is the large interfacial barrier between metal electrodes and OSC which results in low charge injection from the metal electrodes to OSC. In order to overcome the challenge of low charge injection, carbon nanotubes (CNTs) have been suggested as a promising electrode material for organic electronic devices. In this dissertation, we study the effect of carbon nanotube (CNT) density in CNT electrodes on the performance of organic field effect transistor (OFETs). The devices were fabricated by thermal evaporation of pentacene on the Pd/single walled CNT (SWCNT) electrodes where SWCNTs of different density (0-30/um) were aligned on Pd using dielectrophoresis (DEP) and cut via oxygen plasma etching to keep the length of nanotube short compared to the channel length. From the electronic transport measurements of 40 devices, we show that the average saturation mobility of the devices increased from 0.02 for zero SWCNT to 0.06, 0.13 and 0.19 cm2/Vs for low (1-5 /(&)#181;m), medium (10-15 /(&)#181;m) and high (25-30 /(&)#181;m) SWCNT density in the electrodes, respectively. The increase is three, six and nine times for low, medium and high density SWCNTs in the electrode compared to the devices that did not contain any SWCNT. In addition, the current on-off ratio and on-current of the devices are increased up to 40 times and 20 times with increasing SWCNT density in the electrodes. Our study shows that although a few nanotubes in the electrode can improve the OFET device performance, significant improvement can be achieved by maximizing SWCNT/OSC interfacial area. The improved OFET performance can be explained due to a reduced barrier height of SWCNT/pentacene interface compared to metal/pentacene interface which provides more efficient charge injection pathways with increased SWCNT/pentacene interfacial area.
Identifier: CFE0004558 (IID), ucf:49252 (fedora)
Note(s): 2012-12-01
M.S.
Sciences, Physics
Masters
This record was generated from author submitted information.
Subject(s): Organic field-effect transistors -- carbon nanotube electrode -- pentacene -- aligned array -- solution processed -- dielectrophoresis -- interfacial area -- interfacial barrier
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004558
Restrictions on Access: campus 2013-12-15
Host Institution: UCF

In Collections