You are here
Stable expression of tuberculosis vaccine antigen in lettuce chloroplasts
- Date Issued:
- 2011
- Abstract/Description:
- Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is one of the leading reasons of death by an infectious bacterial pathogen. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, a potential candidate antigen, ESAT-6 (6 kDa early secretory antigenic target) was fused with cholera toxin B subunit (CTB). Transplastomic lettuce plants were generated expressing these fusion proteins. Site-specific transgene integration into the chloroplast genome was confirmed by polymerase chain reaction and Southern blot analysis. In transplastomic leaves, expression levels of fusion protein (CTB-ESAT6) varied depending upon the developmental stage and time of leaf harvest with highest-level of accumulation in mature leaves harvested at 6PM. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Lyophilization increased CTB-ESAT6 protein content per gram of leaf material by 22 fold. Western blot analysis of lyophilized lettuce leaves showed that the CTB-ESAT6 fusion protein was stable and can be stored for prolonged period at RT. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of ESAT-6 antigen. GM-1 binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to interact with GM1 ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens fused to CTB in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB vaccine with potential for long term storage at room temperature.
Title: | Stable expression of tuberculosis vaccine antigen in lettuce chloroplasts. |
54 views
26 downloads |
---|---|---|
Name(s): |
Saikumar Lakshmi, Priya, Author Daniell, Henry, Committee Chair Khaled, Annette, Committee Member Naser, Saleh, Committee Member , Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2011 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Tuberculosis (TB) is caused by Mycobacterium tuberculosis and is one of the leading reasons of death by an infectious bacterial pathogen. The development of TB vaccines has been recognized as a major public health priority by the World Health Organization. In this study, a potential candidate antigen, ESAT-6 (6 kDa early secretory antigenic target) was fused with cholera toxin B subunit (CTB). Transplastomic lettuce plants were generated expressing these fusion proteins. Site-specific transgene integration into the chloroplast genome was confirmed by polymerase chain reaction and Southern blot analysis. In transplastomic leaves, expression levels of fusion protein (CTB-ESAT6) varied depending upon the developmental stage and time of leaf harvest with highest-level of accumulation in mature leaves harvested at 6PM. Transplastomic CTB-ESAT6 lettuce plants accumulated up to 0.75% of total leaf protein. Lyophilization increased CTB-ESAT6 protein content per gram of leaf material by 22 fold. Western blot analysis of lyophilized lettuce leaves showed that the CTB-ESAT6 fusion protein was stable and can be stored for prolonged period at RT. Hemolysis assay with purified CTB-ESAT6 protein showed partial hemolysis of red blood cells and confirmed functionality of ESAT-6 antigen. GM-1 binding assay demonstrated that the CTB-ESAT6 fusion protein formed pentamers to interact with GM1 ganglioside receptor. The expression of functional Mycobacterium tuberculosis antigens fused to CTB in transplastomic plants should facilitate development of a cost-effective and orally deliverable TB vaccine with potential for long term storage at room temperature. | |
Identifier: | CFE0004487 (IID), ucf:49303 (fedora) | |
Note(s): |
2011-12-01 M.S. Medicine, Molecular Biology and Microbiology Masters This record was generated from author submitted information. |
|
Subject(s): | Oral delivery -- Edible vaccine -- Lyophilized leaves -- Bacterial infection -- Tuberculosis vaccine | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0004487 | |
Restrictions on Access: | campus 2013-06-15 | |
Host Institution: | UCF |