You are here

Load Estimation for Electric Power Distribution Networks

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
In electric power distribution systems, the major determinant in electricity supply strategy is the quantity of demand. Customers need to be accurately represented using updated nodal load information as a requirement for efficient control and operation of the distribution network. In Distribution Load Estimation (DLE), two major categories of data are utilized: historical data and direct real-time measured data. In this thesis, a comprehensive survey on the state-of-the-art methods for estimating loads in distribution networks is presented. Then, a novel method for representing historical data in the form of Representative Load Curves (RLCs) for use in real-time DLE is also described. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is used in this regard to determine RLCs. An RLC is a curve that represents the behavior of the load during a specified time span; typically daily, weekly or monthly based on historical data. Although RLCs provide insight about the variation of load, it is not accurate enough for estimating real-time load. This therefore, should be used along with real-time measurements to estimate the load more accurately. It is notable that more accurate RLCs lead to better real-time load estimation in distribution networks.This thesis addresses the need to obtain accurate RLCs to assist in the decision-making process pertaining to Radial Distribution Networks (RDNs).This thesis proposes a method based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) architecture to estimate the RLCs for Distribution Networks. The performance of the method is demonstrated and simulated, on a test 11kV Radial Distribution Network using the MATLAB software. The Mean Absolute Percent Error (MAPE) criterion is used to justify the accuracy of the RLCs.
Title: Load Estimation for Electric Power Distribution Networks.
0 views
0 downloads
Name(s): Eyisi, Chiebuka, Author
Lotfifard, Saeed, Committee Chair
Yuan, Jiann-Shiun, Committee Member
Wu, Xinzhang, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In electric power distribution systems, the major determinant in electricity supply strategy is the quantity of demand. Customers need to be accurately represented using updated nodal load information as a requirement for efficient control and operation of the distribution network. In Distribution Load Estimation (DLE), two major categories of data are utilized: historical data and direct real-time measured data. In this thesis, a comprehensive survey on the state-of-the-art methods for estimating loads in distribution networks is presented. Then, a novel method for representing historical data in the form of Representative Load Curves (RLCs) for use in real-time DLE is also described. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is used in this regard to determine RLCs. An RLC is a curve that represents the behavior of the load during a specified time span; typically daily, weekly or monthly based on historical data. Although RLCs provide insight about the variation of load, it is not accurate enough for estimating real-time load. This therefore, should be used along with real-time measurements to estimate the load more accurately. It is notable that more accurate RLCs lead to better real-time load estimation in distribution networks.This thesis addresses the need to obtain accurate RLCs to assist in the decision-making process pertaining to Radial Distribution Networks (RDNs).This thesis proposes a method based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) architecture to estimate the RLCs for Distribution Networks. The performance of the method is demonstrated and simulated, on a test 11kV Radial Distribution Network using the MATLAB software. The Mean Absolute Percent Error (MAPE) criterion is used to justify the accuracy of the RLCs.
Identifier: CFE0004995 (IID), ucf:49555 (fedora)
Note(s): 2013-12-01
M.S.E.E.
Engineering and Computer Science, Electrical Engr and Computing
Masters
This record was generated from author submitted information.
Subject(s): ANFIS -- Distribution Networks -- Load Estimation -- Representative Load Curves
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004995
Restrictions on Access: campus 2018-12-15
Host Institution: UCF

In Collections