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ABSTRACT  

Polymer-derived ceramic (PDC) is the name for a class of materials synthesized 

by thermal decomposition of polymeric precursors which excellent thermomechanical 

properties, such as high thermal stability, high oxidation/corrosion resistance and high 

temperature multifunctionalities. Direct polymer-to-ceramic processing routes of 

PDCs allow easier fabrication into various components/devices with complex 

shapes/structures. Due to these unique properties, PDCs are considered as promising 

candidates for making high-temperature sensors for harsh environment applications, 

including high temperatures, high stress, corrosive species and/or radiation.  

The SiAlCN ceramics were synthesized using the liquid precursor of  

polysilazane (HTT1800) and aluminum-sec-tri-butoxide (ASB) as starting materials 

and dicumyl peroxide (DP) as thermal initiator. The as-received SiAlCN ceramics 

have very good thermal-mechanical properties and no detectable weight loss and large 

scale crystallization. Solid-state NMR indicates that SiAlCN ceramics have the SiN4, 

SiO4, SiCN3, and AlN5/AlN6 units. Raman spectra reveals that SiAlCN ceramics 

contain ñfree carbonò phase with two specific Raman peaks of ñDò band and ñGò 

band at 1350 cm
-1

 and 1600 cm
-1

, respectively. The ñfree carbonò becomes more and 

more ordered with increasing the pyrolysis temperature. EPR results show that the 

defects in SiAlCN ceramics are carbon-related with a g-factor of 2.0016±0.0006. 

Meanwhile, the defect concentration decreases with increasing sintered temperature, 

which is consistent with the results obtained from Raman spectra. 
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Electric and dielectric properties of SiAlCN ceramics were characterized. The 

D.C. conductivity of SiAlCN ceramics increases with increasing sintered temperature 

and the activation energy is about 5.1 eV which higher than that of SiCN ceramics 

due to the presence of oxygen. The temperature dependent conductivity indicates that 

the conducting mechanism is a semiconducting band-gap model and follows the 

Arrhenius equation with two different sections of activation energy of 0.57 eVand 

0.23 eV, respectively. The temperature dependent conductivity makes SiAlCN 

ceramics suit able for high temperature sensor applications. The dielectric properties 

were carried out by the Agilent 4298A LRC meter. The results reveal an increase in 

both dielectric constant and loss with increasing temperature (both pyrolysis and 

tested). Dielectric loss is dominated by the increasing of conductivity of SiAlCN 

ceramics at high sintered temperatures. 

SiAlCN ceramic sensors were fabricated by using the micro-machining method. 

High temperature wire bonding issues were solved by the integrity embedded method 

(IEM). Itôs found that the micro-machining method is a promising and cost-effective 

way to fabricate PDC high temperature sensors. Moreover IEM is a good method to 

solve the high temperature wire bonding problems with clear bonding interface 

between the SiAlCN sensor head and Pt wires. The Wheatstone bridge circuit is well 

designed by considering the resistance relationship between the matching resistor and 

the SiAlCN sensor resistor. It was found that the maximum sensitivity can be 

achieved when the resistance of matching resistor is equal to that of the SiAlCN 
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sensor. The as-received SiAlCN ceramic sensor was tested up to 600 C̄ with the 

relative output voltage changing from -3.932 V to 1.153 V. The results indicate that 

the relationship between output voltage and test temperature is nonlinear. The tested 

sensor output voltage agrees well with the simulated results. The durability test was 

carried out at 510 C̄ for more than two hours. It was found that the output voltage 

remained constant for the first 30 min and then decreased gradually afterward by 0.02, 

0.04 and 0.07 V for 1, 1.5 and 2 hours. 
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CHAPTER ONE: INTRODUCTION  

1.1 Motivation  

Temperatures must be monitored to prevent damage of devices and improve 

their performance in high temperature and harsh environments, such as gas 

turbines, nuclear reactors, high speed vehicles and automotives. Therefore, robust 

sensors are highly desired in the harsh environment of high temperature, high 

pressure, oxidation, radiation and corrosive species. Sensors that can be applied in 

these hostile applications must satisfy two features: firstly, the sensor materials 

must survive at these environments; secondly, the materials must maintain 

specific properties by means of sensoring. Most of the current available materials 

are excluded by these two requirements. Currently, several techniques are under 

development for such applications. However, present electronics technologies are 

limited to silicon-based technology, which has a limited operating temperature 

range of a few hundred degrees Celsius and is not suitable for high temperature 

sensing applications. Another possible option is using the refractory materials, 

such as silicon carbide and/or silicon nitride. However, these type of sensors are 

very restricted by limited fabrication methods, high cost, and a limited operation 

temperature range (typically < 800
 

C̄), especially if the environment involves 

corrosive atmospheres as well.  

Recently, polymer-derived ceramics (PDCs) have been considered as suitable 

materials for making high-temperature microelectromechanical systems 
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(MEMS)/micro-sensors, because PDCs exhibit excellent thermomechanical 

properties, such as high thermal stability, high oxidation/corrosion resistance and 

high temperature multifunctionalities. In addition, the direct polymer-to-ceramic 

processing route of PDCs makes it much easier to be fabricated into various 

components/devices with complex shapes/structures. 

The overall objective of this dissertation is to develop a suitable micro-scaled 

temperature sensor which can fulfill  the requirements of operating in high 

temperature and harsh environment for online, real-time temperature measuring 

and health monitoring. 

1.2 Outline of dissertation 

The dissertation is organized by the following parts: 

Chapter 2 is the literature review of the background of polymer derived 

ceramics and their unique properties suitable for high temperature application. 

The fabrication and characterization of SiAlCN ceramics is discussed in Chapter 3. 

Chapter 4 focuses on the electric and dielectric properties of SiAlCN ceramics. 

Chapter 5 includes the SiAlCN ceramic sensor fabrication and characterization. 

Chapter 6 contains the general conclusions of this dissertation. Additionally, 

Appendix I and Appendix II illustrated the nanofabrication capability of SiAlCN 

ceramics by using focused iron beam (FIB) and the application of SiAlCN 

ceramics in forming carbon nanofiber reinforced ceramic nanocomposites.  
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CHAPTER TWO: LITERATURE REVIEW  

This chapter is separated into two main sections (1) background information of 

polymer-derived ceramics (PDCs) and (2) high temperature sensors. The first part 

includes preceramic precursors, fabrication and processing techniques, 

microstructures and properties of PDCs. The second part discusses different high 

temperature sensors, materials/devices, including resistance temperature detectors, 

thermistors and PDCs sensors. 

2.1 Polymer-derived ceramics 

Polymer-derived ceramics (PDCs) are a class of materials synthesized by thermal 

decomposition of polymeric precursors. The basic processing of PDCs is illustrated in 

Figure 2.1, including the following steps: (i) synthesis of precursors from starting 

chemicals, (ii) crosslinkage of the precursor into an infusible preceramic network, and 

(iii) pyrolysis of the preceramic network into ceramics. PDCs provide advantages, 

such as, flexible fabrication capability, low sintering temperature and excellent 

oxidation and creep resistance compared to the traditional powder route ceramics. 

After pyrolysis, the ceramics are predominately amorphous and this structure can be 

retained even up to high temperatures. Further increasing temperature may lead to 

crystallization of the amorphous structure to form polycrystalline ceramics. The 

majority of researches on PDCs have been focused on amorphous state.  
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Figure 2.1 Basic fabrication processing of PDCs. 

2.1.1 Polymeric precursors 

PDCs have attracted great attention in these last few decades due to their 

promising high temperature harsh environment applications. Many types of PDCs 

have been discovered and can be classified into three main types, based on the 

number of the components in the system, (1) binary systems of SiC, and Si3N4, (2) 

ternary systems of SiCN, SiCO and BCN as well as (3) quaternary and multinary 

systems of SiAlCN, SiCNO, SiBCN and SiAlBCN, SiBCNO and so on.  

One key issue for developing polymer-derived ceramics (PDCs) is to 

synthesize precursors, the starting material, to obtain PDCs. Composition, 

microstructure and the properties of PDCs are all influenced by the starting material 

used. In the 1960ôs, the first publications that use the fabrication of polymer-derived 

ceramics were reported by Ainger
1
 and Chantrell

2
. After that several research groups 

worked on synthesis PDCs. However, PDCs were not fully recognized until Yajima
3
 

and Fritz
4
 synthesized SiC and Si3N4 ceramic fibers, crucial in the fields of aerospace, 

military and energy propulsion.  

Organosilicon polymers are the most widely used stating materials due to their 

well know chemistry, reaction-controlled thermolysis and polymerized function sites 

including the following functional groups: Si-H, Si-Cl, Si-C=C. The synthesis of 

preceramic percursors are commonly utilizes chlorosilanes RxSiCl4-x (x=0-3) for use 
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as starting materials. Normally through two kinds of methods of ammonolysis 

reactions with ammonia or aminolysis with different amines
5
 we can obtain the 

desired chlorosilane, as illustrated in Figure 2.2. Various types of precursors were 

synthesized by using silicon-based polymers, such as, polysilanes, polysilazanes, 

polysiloxanes, polycarbosilanes, polyborosilazanes and polyaluminasilazanes.  

 
Figure 2.2 Synthesis methods for polycarbosilazanes by using chlorosilanes as 

starting materials
5
.  

Most recently, Colombo and his co-workers summarized a simplified general 

formula of Si-based precursor as shown in Figure 2.3
6
. As we can see there are two 

important parameters of this general formula: the backbone group X and the 

functional group R
1
 and R

2
. The type of Si-based polymeric precursor is determined 

by the backbone group X, for example, if  X = Si then we obtain poly(organosilanes); 

if X = O then we obtain poly(organosiloxanes); if X = B then we obtain poly 

(organoborosilazanes); if X = CH2 then we obtain poly(organocarosilanes) and if X= 

NH then we obtain poly(organosilazanes). More and more combinations are 

illustrated in Figure 2.4
6
. The functional group R

1
 and R

2
 (either hydrogen, aliphatic 

or aromatic side groups) are highly related to composition, microstructure and 
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properties of the final ceramic products. For instance, variation of each R group from 

hydrogen, aliphatic and aromatic groups will directly manipulate composition, 

microstructure, thermal and chemical stability, electric and dielectric properties, as 

well as the solubility and rheological properties of the ceramic. 

 

Figure 2.3 Simplified general formula of the molecular structure of the Si-based 

preceramic precursors
6
. 

 

Figure 2.4 Main classes of preceramic polymer precursors for the fabrication of Si-

based PDCs
6
.  

Among the huge amount of polymer precursors, the synthsis of SiAlCN 

precursor will be discussed only here for the research purpose of this dissertation. 

Polymer derived SiAlCN ceramics are considered to be promising candidates 

for high temperature and harsh environment applications due to excellent thermal-

mechanical properties of this sort of material, such as high oxidation and corrosion 
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resistance, high temperature stability and multifunctionality. Several SiAlCN 

precursors were reported such as, {[(Me 3Si)2N]2AlNH2} 2
7
, (Et2AlNH 2)3

8
, 

(CH3)2AlNH2
9 

and (Al(OCH(CH3)2)3
10

. The high yield SiAlCN precursor was 

synthesized by reacting the polysilazane [CH3HNH]n either with (CH3)3Al or 

(CH3)2AlNH2 reported by Seyferth and co-workers
9
 as shown in Figure 2.5. With 

respect to synthesis, they also found that the (CH3)2AlNH2 is a better choice than 

(CH3)3Al due to the lower alkylating activity and presence of crosslinkable Al-NH2 

groups. Berger
11

 prepared polyaluminasilazanes from polysilazanes and 

polysilylcarbodiimides by means of hydroalumination of vinyl substituents at Si and 

subsequent dehydrocoupling of N-H reactive sites, as demonstrated in Figure 2.6. The 

detailed polymer-to-ceramic evolution during the pyrolysis was investigated by 

Dhamne and co-workers
12

. 

 

Figure 2.5 Synthesis routes of polyaluminasilazanes starting from (CH3)3Al and 

(CH3)2AlNH2
11

. 
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Figure 2.6 Synthesis of polyaluminasilazanes by means of hydroalumination and 

dehydrocoupling reactions
12

. 

 

2.1.2 Fabrication capability of polymer-derived ceramics 

One unique advantage of PDCs is its flexible processing capability for making 

ceramic components/devices with complex and inconvenient shapes due to the 

intermediate state of the liquid polymer, which the traditional ceramic-powder route 

cannot. A variety of ceramic component/devices, such as high-temperature ceramic 

fibers, ceramic matrix composites, micro-electro-mechanical systems (MEMS) and 

micro-sensors, have been fabricated by using PDC processing. These 

components/devices are particularly important for applications in harsh environments 

with high temperature and corrosion.  

The as-synthesized liquid polymeric precursor can be easily shaped into various 

complex structures/components. These shaping techniques could be casting 

(micro/nano casting
13-15

, tape casting
16

 and freeze casting
17

), machining
18

, lithography 

(soft lithography
19-21

 and microstereolithography
22

), coating (spraying coating
23

, dip 

coating
24,25

, spin coating
26

 and chemical vapor deposition
27

), fiber drawing
28,29

 and 
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direct writing
30

 as well as fabrication of composites
31-33

. A schematic drawing of the 

fabrication techniques was included in Figure 2.7.  

 

Figure 2.7 Fabrication methods of polymer-derived ceramics. 

 

Pham and co-workers
34

 fabricated 3-D SiCN ceramic nanostructures with a 

resolution of 210nm, and found the addition of Si-nanoparticle fillers may greatly 

reduce shrinkage to get integrated features as shown in Figure 2.8. 
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Figure 2.8 3-D SiCN ceramic microstructures fabricated by nanostereolithography; (a) 

schematically designed woodpile structure (b) polymeric structure without filler (c) 

ceramic structure without filler & (d) ceramic structure with 20 wt% Si filler (e) 

ceramic structure with 30 wt% Si filler (f) ceramic structure with 40 wt% Si filler, and 

other 3-D microstructrues with 40wt% Si filler, (g) micro tube (h) microcruciform. 

(Each inset is the top-view of the structure) 
34

. 

The flexibility  of fabrication of micro-electro-mechanical systems (MEMS) and 

micro sensor/actuator/transducer of PDCs has allowed increased investigations by 

other research groups. Liew and co-workers 
15,35-38

 at the University of Colorado at 

Boulder USA, fabricated a series of SiCON MEMS devices by using preceramic 
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polymers and photolithography methods. They prepared a vertical electrostatic 

actuator which consisted a four-flexured SiCN structure mounted onto a alumina 

substrate with metal pads and wiring shown in Figure 2.9. The thickness of SiCN was 

40 ɛm and suspended 3ɛm above the electrode and a deflection of 370nm was 

detected coresponding to the input voltage of 200V. 

 

Figure 2.9 SiCN electrostatic actuator; (a) schematic drawn (b) assembled on a 

alumina substrate
15

. 

 

2.1.3 Microstructure of polymer-derived ceramics 

Amorphous PDCs possess very complex structures different from 

conventional crystalline and amorphous structures. While the exactly structures of 

PDCs are not known very well which depends on the composition of the precursor, 

pyrolysis conditions and annealing temperatures. As stated earlier, PDCs are 

composed of an amorphous matrix made of SiCxN4-x (x can be 0, 1, 2, 3 and 4) units 

and free carbon phase which forms nano-sized clusters. In addition, the materials 

contain a fairly large amount of carbon dangling bonds, which are either in the matrix 

or on the surface of the carbon nanoclusters. The schematic structure model of PDCs 

(a) (b) 
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is illustrated in Figure2.10. Two distinguished characteristics of PDC materials are the 

(1) free carbon nanocluster and (2) dangling carbon bonds and both are key factors for 

determining their properties. A better understating of the structure-relationship of 

PDCs is required not only to generate new fundamental knowledge, but also to lead to 

potential widespread applications of the material. 

 

Figure 2.10 Schematic structure model of PDCs. 

 Several characterization technologies have been implemented in the study of 

microstructure and structural evolution of PDCs. Such instrumental methods include, 

Magic Angle Spin-Nuclear Magnetic Resonance (MAS-NMR)
39,40

, Small Angle X-

ray Scattering(SAXS)
41,42

, Fourier Transform Infrared Spectroscopy (FT-IR)
 40

, X-ray 

Diffraction (XRD)
43

 and Raman Spectroscopy
44

 for internal information 

characterization; Transformation Electron Microscopic (TEM)
45

, and Electron Energy 

Loss Spectroscopy (EELS)
46

 for local information characterization. 

Carbon 

cluster 

S

i 

C N 

C-dangling 

bond 
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As mentioned above, the microstructure of PDCs includes two main parts, the 

amorphous matrix and free carbon cluster, therefore, the structural characterization 

and evolution of PDCs will be discussed in this section with respect to these two parts. 

Raman spectroscopy is a powerful and nondestructive tool for the initial 

examination of carbon materials. As of today, the Raman spectroscopy is widely used 

to characterization the structure evolution of free carbon in PDCs
47-50

. Two major 

Raman peaks of free carbon are observed in PDCs; the first peak corresponding to the 

D bond at approximately 1350 cm
-1
 and the second peak corresponding to the G bond 

at approximately 1582 cm
-1
 as well as the Dô- and Gô bonds located at ~ 1620 cm

-1
 

and 2700 cm
-1

, respectively
50

. The G bond is caused by in-plane bond stretching of 

sp
2
 carbon, which is very important for the electric properties of PDC. Another 

important parameter that needs to be considered is the intensity ratio between D bond 

and G bond (ID/IG). This ratio can be used to calculate the free carbon cluster size.  

Due to the crucial role that free carbon plays in the determination of the 

properties of PDCs quantitative measurement must be done in order to reveal the 

concentration of free carbon. This quantitative analysis of free carbon content in SiCN 

system can be revealed by Raman spectroscopy reported by Jiang and co-workers
44

. 

They used silicon powder as an external reference, as shown in Figure 2.11 (a). A 

linear relationship between the volume ratio of silicon powder, SiCN powder 

(VSi/VSiCN) and normalized intensity ratio of (ISi/ICK) was found. Therefore, the free 

carbon concentration was achieved as the slope of the plot of VSi/VSiCN versus ISi/ICK, 
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as shown in Figure 2.11 (b). 

 

Figure 2.11 Raman spectroscopy of Si-SiCN mixture with the volume ratio of 1:1 (a). 

(b) Plot of VSi/VSiCN as a function of normalized ISi/ICK
44

. 

Another important technique for investigating the structure of PDCs is 

multinuclear magic angle spin-nuclear magnetic resonance (MAS-NMR), one of the 

most accurate and useful methods to explore bonding conditions (the coordination of 

elements) of PDCs
39,40,51,52

. Seitz
39

 et al. investigated the structure of polysilazane 

(NCP 200) and polyvinylsilazane (VT 50) by solid state NMR. It was observed that 

NCP 200 contained mixed Si sites of SiN4, SiCN3, SiC2N2 but only SiN4 for VT 50 

and 
13

C NMR revealed that sp
2 
amount in VT 50 was much higher than that of NCP 
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200. Widgeon
52

 and colleges used high-resolution NMR to reveal the structure of 

SiCO-PDC which consisted of a SiCxO4-x network and a sp
2
 hybrid free carbon 

nanodomain. At the same time, the oxygen-rich SiCxO4-x units were expected to be 

more concentrated in the interior of this network while the carbon-rich units were 

expected to be localized at the interface of free carbon nanodomains. 

 Electron paramagnetic resonance (EPR) is yet another widely used technique 

to characterize the structure of PDC. EPR was used to determine the type of defects 

and their concentration in PDCs
40,53-55

.   Sergey
54

 and co-workers found that the EPR 

signals of SiCN ceramics corresponded to dangling sp
2
 hybridized carbon within the 

temperature range of 4 to 300K with g factor of 2.0027. Decreasing line width was 

noticed with increasing pyrolysis temperature. Yee
55

 et al. characterized the SiBN and 

SiBCN system using EPR spectrum and revealed that the EPR signals of SiBN were 

very weak and in contrast, that of SiBCN were much stronger. They believed that 

because the later one introduced carbon in the network.  The trend of intensity of EPR 

according to pyrolysis temperatures varied case by case due to precursor 

differences
53,55

.  

 

2.1.4 Properties of polymer-derived ceramics 

Numerous publications reported about different properties of PDCs, such as 

mechanical properties
56-59

, electric properties
60-62

, thermal-mechanical properties
63-66

, 

optical
67,68

 and magnetic properties
69,70

. In this section, only the thermal-mechanical, 
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electric and dielectric properties will be discussed for high temperature sensor 

applications.  

 

2.1.4.1 Thermal-mechanical properties of PDCs 

PDCs possess excellent thermal-mechanical properties of high 

oxidation/corrosion resistance, high temperature stability, high creep resistance. These 

excellent high temperature properties make PDCs promising candidates for the high 

temperature harsh environment applications. Ralf
71

 and co-workers developed a 

SiBCN ceramic with very high temperature stability. They did not find any serious 

thermal decomposition up to 2000
o
C which high than that of SiCN and Si3N4 

ceramics and suggested application exceed to 1500
o
C, as shown in Figure 2.12. The 

materials did not show large-scale crystallization up to 1600-1700
o
C. Long time 

durability is another important feature for high temperature applications. The high 

temperature experiment had been carried out on polymer derived ceramics
72-74

 and the 

results revealed that the SiBCN ceramics had a negligible strain rate at the 

temperature as high as 1500
o
C (Figure 2.13).  



17 

 

 

Figure 2.12 Thermal gravimetric analysis (TGA) of polymer-derived SiCN, SiBCN 

and silicon nitride
71

.  

 

Figure 2.13 Changes in the strain rate of SiBCN ceramic with time in three stage. At 

1500
o
C and 75MPa

72
. 

Oxidation/corrosion resistance is one of the critical parameters to determine the 

ability of harsh environment application. Bahloul and Delverdier worked on the 

oxidation behavior of SiCN and SiCO system at 1992 and 1993, respectively which 

were considered as primary research on the oxidation topic of PDC
75,76

. Each of their 

results suggests that the oxidation rate of these PDCs were close to or a little bit 

higher than that of SiC and Si3N4
63,77,78

. Similar results were observed by recent 
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researchers
64,79

 and even for the B-doped PDC
80

. Most recently, Wang and An 

revealed that the Al-doped SiCN ceramics had a higher oxidation resistance than that 

of the above mentioned ceramics
66,81-85

. They found that the oxidation thickness of 

SiAlCN was much smaller than that of SiCN at the same oxidation time with the 

tested temperature of 1200
o
C. And after 100 hours the oxidation thickness of SiAlCN 

tended to achieve steady state, in contrast, that of SiCN kept increasing, as shown in 

Figure 1.14. It was reported that SiAlCN ceramics had excellent corrosion resistance 

than SiCN ceramics which were comparable with SiC and Si3N4
83

, as illustrated of the 

SEM images in Figure 2.15. The properties of polymer derived ceramics and other 

high-temperature materials are compared in Table 2.1. It shows that polymer derived 

ceramics have much better oxidation resistance than others. The oxidation/corrosion 

is one of the most important problems to limit the high temperature applications of 

materials. Due to the high oxidation/corrosion resistant of SiAlCN ceramics, they are 

good candidates for high temperature and harsh environment applications.  

 

 

Figure 2.14 A plot of the square of the oxide scale thickness as a function of 

annealing time for both SiCN and SiAlCN at 1200C̄ in dry air.[42] 
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Figure 2.15 SEM micrograph of the surface of (a) SiCN, (b) SiAlCN at 1400̄ C for 

300h in 50%H2O-50%O2 environment
83

. 

 

Table 2.1 Properties of polymer derived SiCN and other high-temperature 

materials. 

 SiCN SiC Si3N4 

Density (g/cm
3
) (annealed @ 1000̄C) 2.2 3.17 3.19 

Youngôs modulus (GPa) 92 400 320 

Poissonôs ratio 0.18 0.14 0.24 

CTE (³10
6
/K) 3 3.8 2.5 

Strength (MPa) 
~500-

1000 
~400 ~700 

Hardness (GPa) 15-20 30 28 

Fracture toughness (MPaÖm
1/2

) 2-3.5 4-6 5-8 

Thermal shock FOM* 
1800-

3600 
350 880 

Oxidation rate (³10
-18

m
2
/s, @ 1400̄C) 0.47 16.4

77#
 6.2

78#
 

Corrosion rate (³10
-6
g/cm

2
hr, @ 1400̄C 

in water vapor) 
0.98 6.4

86#
 6.2

18#
 

* Thermal shock FOM = strength/(E.CTE) 

# The lowest values reported for SiC and Si3N4 tested at the same conditions. 

2.1.4.2 Electric properties of PDCs 

Previous studies have shown that polymer derived ceramics are one kind of 

amorphous semiconductors and their electric conductivities can be tailored within a 

large range up to 15 orders of magnitude (typically from ~10
-10

 to ~1 (ohm*cm)
-1
) by 

varying the polymeric precursor, pyrolysis temperature and atmosphere as well as the 

annealing temperature and time
36,60,87-90

. For example, PDCs behave more like a 
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insulator at low pyrolysis temperature < 600
o
C, and semiconductor at middle 

temperatures < 1200~1400
o
C, when goes to high sintered temperature > 1400

o
C̆ 

they are can be described as metal semiconductors. Researchers also found that free 

carbon plays an important role to determine the electric properties of PDCs
47,89

. The 

free carbon will form a continuous network and contribute the overall conductivity of 

the PDCs when increasing the pyrolysis temperature. However, these formation 

temperatures were altered case by case. Take the case shows in Figure 2.16 for 

example
91

, the free carbon formed continuous network at 800
o
C for  polysiloxanzes 

[RSiO1.5]n with R=C6H5 (PPS) and 1400
o
C for R-CH3 (PMS). 

 

Figure 2.16 Model of carbon redistribution and continuous network formation of PPS 

and PMS
91

. 

The influence of pyrolysis temperature of the electric conductivity of PDC was 

studied by Haluschka and colleges
60

. They found the electric conductivity evolution 

of SiCN ceramics could be classified into three temperature regimes, demonstrated in 

Figure 2.17. First, the increase of conductivity of SiCN ceramics from 1000-1300
o
C 

due to an enhanced sp
2
/sp

3
  ratio of loss of residual hydrogen of carbon atoms; second, 

the increase of conductivity of SiCN caused by the formation of SiC and loss of 
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nitrogen of amorphous matrix between 1300 and 1600
o
C; third, the electric 

conductivity was contributed by nitrogen doped SiC.  

    

Figure 2.17 Electric conductivity of SiCN ceramic depending on the annealing 

temperature and time
60

. 

Researchers tested the temperature dependence conductivity properties in order 

to understand the conduction mechanism of amorphous PDCs 
60,88,92

. The mechanisms 

were found and is probable that three dimension variable range hopping (Mottôs law) 

with a linear relationship between the conductivity of T
1/4

 (Equation  2.1, T is testing 

temperature), band-gap semiconducting mechanism which follows Arrhenius law 

with a linear relationship of conductivity and inverse test temperature (Equation 2.2) 

as well as the band tail hopping mechanism. Most recently, Ryu and colleges
93

 found 

the semiconducting behavior of SiCNO ceramics are able to sustain temperatures up 

to 1300
o
C which is the highest one among all reported ceramic materials. The 

conducting mechanism of these materials was variable range hopping and the electric 

conductivity was highly depending on the O/N ratio, as shown in Figure 2.18 and 

Figure 2.19. 
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Currently, Zhang et al. discovered a super high piezoresistivity effect of SiCN 

ceramic with a gauge factor as high as 1000~4000
94

 which is much higher than that of 

any existing ceramics (Figure 2.20 (a)). The mechanism was due to the formation of 

tunneling percolation effect of free carbon as shown in Figure 2.20 (b)
95

.   

Figure 2.19 Electric conductivity of 

SiCNO ceramic varied with O/N ratio 

at room temperature
93

. 

 

Figure 2.18 Temperature 

dependent conductivity of SiCNO 

ceramic up to 1300
o
C

93
. 

(a) (b) 
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Figure 2.20 The piezoresistive effect of SiCN ceramics (a) resistance change versus 

test pressures (b) schematic drawing of conduction mechanism 
95

. Insert figure is the 

plot of guager factor versus tested pressure.  

2.1.4.3 Dielectric properties of PDCs 

A brief summary of the background of dielectric theory will first be addressed 

because it is not as mature as classical theories of electricity and mechanics.  

Dielectrics are a class of materials that can respond to an external electric 

stimulation with a polarization and have been widely used in industries as capacitors, 

resonators and energy storage devices. The polarization P is proportional to the 

electric field E.  

0P Ece=     Eq. (2-3) 

where ɢ is a constant, named dielectric susceptibility and ὑo is the dielectric constant 

in vacuum (8.85×10
-12

 F/m).  

 The dielectric constant is a measure of the polarization capability of a material. 

The definition of complex dielectric constant is 

 

(b) 
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* 'jr re e e= -     Eq.(2-4) 

where j is the image unit; ὑr and ὑᾳ are the real part and image part of the dielectric 

constant, respectively. Meanwhile, the dielectric loss is defined as 

'

tan r

r

e
d
e
=  

   Eq. (2-5) 

where ŭ is loss angle.  

  Polarization is one of the most important parameters to understand in 

dielectrics. Generally, there are five polarization mechanisms for a dielectric material, 

as shown in Figure2.21
96

. 

1) Electronic polarization: electric field induced displacement of the outer electron 

cloud with respect to the inner positive nuclei. The response time is usually 

~10
-14

-10
-16

 s. 

2) Atomic or ionic polarization: The distance between the positive charged atoms 

and negative charged atoms can be changed by an electric field. The response 

time is ~10
-12

-10
-13

s. 

3) Orientational polarization: If there are dipoles in a material, the electric field 

generates a torque on each dipole, which causes dipoles aligned along the electric 

field direction. The response time is ~10
0
-10

-9
s (which highly dependents on 

temperature). 
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4) Hopping polarization: localized charges (ions and vacancies, or electrons and 

holes) can hop from one site to the neighboring site under an electric field. The 

response time is ~10
-2

-10
-5

 s (which highly dependents on temperature). 

5) Space charge polarization: The mobile or trapped charges (positive and negative 

charged) can be separated by an electric field. The response time is ~10
2
-10

-1
s. 

(highly dependents on temperature).  

 

Figure 2.21 Polarization mechanisms in dielectric materials
96

. 

 The Debye theroy is the most well-known and useful theroy for understanding  

dielectric phenoment of materials. The Debye equation is described as following and 

the schematic drawn is illustrited in Figure 2.22.  

* '

0

j
1 j

rs
r r r

e
e e e e

wt
¤= - = +
+

 Eq. (2-6) (1) 

2 2

01 j
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r r
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+
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Where ὑrs is the static dielectric constant, ὑrÐ the dielectric constant at high 

frequency limit, ɤ is the angle frequency ɤ=2ˊf, Űo is the relaxation time.  

By considering the real part ὑr and image part ὑrᾳ without ɤŰo, we obtain:  

2 2

' 2

2 2

rs r rs r
r r

e e e e
e e¤ ¤+ -å õ å õ
- + =æ ö æ ö

ç ÷ ç ÷
 Eq. (2-8) 

      The relationship between ὑr and ὑrᾳ is shown in Figure 2.23 and the maximum 

value of ὑrᾳ is reached at ɤŰo=1.  

 

Figure 2.22 ὑr, ὑrᾳ and tanŭ as a function of ɤ for cases with negligible contribution of 

s due to carrier migration
96

. 
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Figure 2.23 Schematic diagram of ὑr-ὑrᾳ relation for cases with only one relaxation 

time Űo
96

. 

 The state of art of dielectric properties of polymer derived ceramics. 

The studies of dielectric properties of PDCs are very limited. Jiang
97

 

characterized the dielectric constant and loss of SiCN ceramics and found that the 

SiCN owned a very high dielectric constant and loss due to the high defect 

concentration and free carbon content. Similar results were also found by Yu
98

 and 

Li
99

 in SiCTi and SiBCN system, respectively. Recently, Ren and colleges
100,101

 used 

a dielectric resonator cavity method measured the dielectric properties of SiBCN 

ceramic at microwave frequency and high temperature. The dielectric constant and 

loss increased with increasing test temperature. 

Due to the unique properties of flexible near net sharp fabrication capability, 

high oxidation/corrosion resistance, high temperature stability and multifunction 

properties, polymer derived ceramics are considered promising candidates for high 

temperature and harsh environment applications.  
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2.2 Background of high temperature sensors 

Turbine engines can be found in power generation systems, aerospace 

propulsion, and automotives and are important to the functionality of such systems. 

The working condition of turbine engine system is very hostile include high 

temperatures (500-1400̄ C), high pressures (200-600 psi), and corrosive environments 

(oxidizing conditions, gaseous alkali, and water vapors). Online, real-time 

temperature and pressure monitoring of the inert environment of turbine engines can 

further improve the performance and reliability, reduce the pollution and improve the 

turbine engines design. Robust sensors are highly desired to measure and monitor the 

temperature and pressure in these harsh environments. However, fabrication of such 

sensors presents a huge technical challenge. The major hurdle is that the sensors must 

survive harsh environments, including high temperatures, high stress, corrosive 

species and/or radiation. In addition, the sensor materials must maintain specific 

properties at high temperatures in order to provide means for sensing; and they must 

do so in an easy-to-microfabricate way in order to lower costs.  

Currently, several techniques are under development for such applications. 

High temperature metal based resistance temperature detector (RTD), such as Pt. This 

kind of sensor is very expensive and plagued with problems of self heating, long 

response time and bad oxidation/corrosion resistance as well as limited working 

temperature <550
o
C for most applications. Optical-based non-contact technology is a 

popular method in determining these parameters. However, it has been shown to lack 
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the necessary accuracy for good measurement and typically break down over 

time
102,103

. Another promising technique to measure these parameters without 

disturbing the work environment is using miniature sensors. Silicon carbide (SiC) and 

silicon nitride (Si3N4)-based ceramic microsensors are being investigated for high-

temperature and harsh environment applications
104-108

. However, these sensors are 

very restricted by limited fabrication methods, high cost, and a limited operation 

temperature range (typically < 800
o
C).  

Most recently, polymer derived ceramics have attracted a great deal of 

attention for making high temperature sensors due to their excellent high temperature 

properties. Leo and colleges
109

 proposed a hybrid SiCN high temperature pressure 

sensor by embedding piezoresistive chromium strain gauge between two thin SiCN 

membranes. Seo and co-workers
110

 demonstrated a fabrication method of PDCs thin 

films for high temperature heat flux sensor application. However, these ñPDC sensorsò 

are all at a early stages of development and are currently at the conceptual level; no 

real sensors have been fabricated and characterized at the current moment.  
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