You are here

Peak Power Scaling of Nanosecond Pulses in Thulium based Fiber Lasers

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
Thulium based fiber lasers represent a promising alternative for pulse energy scaling and highpeak power generation with ytterbium based systems at 1 micrometer. Advantages of thulium arise fromthe operation at longer wavelengths and a large gain bandwidth (1.8-2.1 micrometer). Nonlinear effects,such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasersand large mode field areas can significantly increase the nonlinear thresholds. Compared to 1 micrometer systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameterin step index fibers. Similar behavior is expected for index guiding thulium doped photonic crystalfibers.In this work a novel thulium doped rod type photonic crystal fiber design with large mode field diameter (>50 micrometer) was first characterized in CW-lasing configuration and then utilized as finalamplifier in a two stage master oscillator power amplifier. The system generated MW-level peakpower at 6.5ns pulse duration and 1kHz repetition rate. This world record performance exemplifiesthe potential of thulium fiber lasers to supersede ytterbium based systems for very high peak powergeneration in the future.As part of this work a computer model for the transient simulation of pulsed amplification inthulium based fiber lasers was developed. The simulations are in good agreement with the experimentalresults. The computer model can be used for efficient optimization of future thulium basedfiber amplifier designs.
Title: Peak Power Scaling of Nanosecond Pulses in Thulium based Fiber Lasers.
15 views
8 downloads
Name(s): Gaida, Christian, Author
Richardson, Martin, Committee Chair
Shah, Lawrence, Committee Member
Amezcua Correa, Rodrigo, Committee Member
, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Thulium based fiber lasers represent a promising alternative for pulse energy scaling and highpeak power generation with ytterbium based systems at 1 micrometer. Advantages of thulium arise fromthe operation at longer wavelengths and a large gain bandwidth (1.8-2.1 micrometer). Nonlinear effects,such as self phase modulation, stimulated Raman scattering and stimulated Brillouin scattering generally limit peak power scaling in fiber lasers. The longer wavelength of thulium fiber lasersand large mode field areas can significantly increase the nonlinear thresholds. Compared to 1 micrometer systems, thulium fiber lasers enable single mode guidance for two times larger mode field diameterin step index fibers. Similar behavior is expected for index guiding thulium doped photonic crystalfibers.In this work a novel thulium doped rod type photonic crystal fiber design with large mode field diameter (>50 micrometer) was first characterized in CW-lasing configuration and then utilized as finalamplifier in a two stage master oscillator power amplifier. The system generated MW-level peakpower at 6.5ns pulse duration and 1kHz repetition rate. This world record performance exemplifiesthe potential of thulium fiber lasers to supersede ytterbium based systems for very high peak powergeneration in the future.As part of this work a computer model for the transient simulation of pulsed amplification inthulium based fiber lasers was developed. The simulations are in good agreement with the experimentalresults. The computer model can be used for efficient optimization of future thulium basedfiber amplifier designs.
Identifier: CFE0004845 (IID), ucf:49699 (fedora)
Note(s): 2013-08-01
M.S.
Optics and Photonics, Optics and Photonics
Masters
This record was generated from author submitted information.
Subject(s): Fiber Laser -- Fiber Amplifier -- Photonic Crystal Fiber -- Master Oscillator Power Amplifier -- Thulium
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004845
Restrictions on Access: campus 2018-08-15
Host Institution: UCF

In Collections