You are here

Dispersal, Gene Flow, and Adaptive Evolution During Invasion: Testing Range-Limit Theory with the Asian Tiger Mosquito

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
Understanding the factors that make non-native species successful invaders is an important step towards mitigating spread. At the same time, species invasions can serve as natural experiments to test range-limit theory. Range-limit theory postulates declines in local abundance (abundant center model) and genetic diversity (central-peripheral hypothesis) towards range edges because of underlying environmental gradients. Such declines constrain adaptation to marginal habitats via gene swamping. However, broader evolutionary theory predicts intermediate rates of immigration into range-edge populations can relieve genetic drift and improve adaptive potential. I tested hypotheses generated from theory while illuminating aspects affecting of the invasion of the Asian tiger mosquito (Aedes albopictus Skuse) into the US. Using reciprocal distribution modeling, I found US populations occupied significantly different climate and habitat than in their native range (SE Asia). Most inconsistencies were found in the northern US range, where Ae. albopictus has recently crept northward, providing an opportunity to test range-limit theory as the range reaches its limit. Because of its limited natural dispersal ability, rapid spread after the 1985 US introduction pointed to human-aided dispersal. I tested the current role of human-aided versus natural dispersal using a landscape genetics framework, and found that natural dispersal dominated current patterns. Some distant localities were highly genetically similar, indicating potential human-aided transport in limited cases. Asymmetric gene flow from core to edge localities supported the abundant center model, but uniformly high genetic diversity contrasted with the central-marginal hypothesis. I detected a significant signature of local adaptation by overwintering diapause-induced eggs in multiple field sites using reciprocal transplants. Surprisingly, most genotypes from throughout the range produced large offspring when overwintered at the range edge. Relative offspring mass between home and away winters peaked at an intermediate immigration rate. These results show that rapid adaptation has occurred in US populations of Ae. albopictus and highlight the potential for further spread. Genetic admixture from multiple introductions may explain high genetic diversity throughout the US range and contribute to high offspring size for all genotypes overwintered at the range edge. Finally, my work highlights the need for a better understanding of contemporary ecological and evolutionary processes leading to range-limits (or expansion) to more accurately reflect processes occurring in a human-dominated world.
Title: Dispersal, Gene Flow, and Adaptive Evolution During Invasion: Testing Range-Limit Theory with the Asian Tiger Mosquito.
24 views
13 downloads
Name(s): Medley, Kimberly, Author
Jenkins, David, Committee Chair
Quintana-Ascencio, Pedro, Committee Member
Hoffman, Eric, Committee Member
Lounibos, Phil, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Understanding the factors that make non-native species successful invaders is an important step towards mitigating spread. At the same time, species invasions can serve as natural experiments to test range-limit theory. Range-limit theory postulates declines in local abundance (abundant center model) and genetic diversity (central-peripheral hypothesis) towards range edges because of underlying environmental gradients. Such declines constrain adaptation to marginal habitats via gene swamping. However, broader evolutionary theory predicts intermediate rates of immigration into range-edge populations can relieve genetic drift and improve adaptive potential. I tested hypotheses generated from theory while illuminating aspects affecting of the invasion of the Asian tiger mosquito (Aedes albopictus Skuse) into the US. Using reciprocal distribution modeling, I found US populations occupied significantly different climate and habitat than in their native range (SE Asia). Most inconsistencies were found in the northern US range, where Ae. albopictus has recently crept northward, providing an opportunity to test range-limit theory as the range reaches its limit. Because of its limited natural dispersal ability, rapid spread after the 1985 US introduction pointed to human-aided dispersal. I tested the current role of human-aided versus natural dispersal using a landscape genetics framework, and found that natural dispersal dominated current patterns. Some distant localities were highly genetically similar, indicating potential human-aided transport in limited cases. Asymmetric gene flow from core to edge localities supported the abundant center model, but uniformly high genetic diversity contrasted with the central-marginal hypothesis. I detected a significant signature of local adaptation by overwintering diapause-induced eggs in multiple field sites using reciprocal transplants. Surprisingly, most genotypes from throughout the range produced large offspring when overwintered at the range edge. Relative offspring mass between home and away winters peaked at an intermediate immigration rate. These results show that rapid adaptation has occurred in US populations of Ae. albopictus and highlight the potential for further spread. Genetic admixture from multiple introductions may explain high genetic diversity throughout the US range and contribute to high offspring size for all genotypes overwintered at the range edge. Finally, my work highlights the need for a better understanding of contemporary ecological and evolutionary processes leading to range-limits (or expansion) to more accurately reflect processes occurring in a human-dominated world.
Identifier: CFE0004635 (IID), ucf:49891 (fedora)
Note(s): 2012-05-01
Ph.D.
Sciences, Biology
Doctoral
This record was generated from author submitted information.
Subject(s): biogeography -- niche shifts -- landscape genetics -- rapid adaptation -- mosquitoes
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004635
Restrictions on Access: campus 2017-11-15
Host Institution: UCF

In Collections