You are here

ACTION RECOGNITION USING PARTICLE FLOW FIELDS

Download pdf | Full Screen View

Date Issued:
2012
Abstract/Description:
In recent years, research in human action recognition has advanced on multiple fronts to address various types of actions including simple, isolated actions in staged data (e.g., KTH dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveillance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow, and interest-points, have been developed for their recognition. Most perform very well in standard action recognition datasets, but fail to produce similar results in more complex, large-scale datasets. Action recognition on large categories of unconstrained videos taken from the web is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints, huge interclass variations, cluttered background, occlusions, bad illumination conditions, and poor quality of web videos cause the majority of the state-of-the-art action recognition approaches to fail. An increasing number of categories and the inclusion of actions with high confusion also increase the difficulty of the problem. The approach taken to solve this action recognition problem depends primarily on the dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a new method for video representation is proposed and three new approaches to perform action recognition in different scenarios using varying prerequisites are presented. The prerequisites have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and tracking to perform action recognition; 2) Scenario requires background and foreground separation to perform action recognition; and 3) No pre-processing is required for action recognition.First, we propose a new video representation using optical flow and particle advection. The proposed ``Particle Flow Field'' (PFF) representation has been used to generate motion descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We show that particle flow fields has better performance than other low-level video representations, such as 2D-Gradients, 3D-Gradients and optical flow. Second, we analyze the performance of the state-of-the-art technique based on the histogram of oriented 3D-Gradients in spatio temporal volumes, where human detection and tracking are required. We use the proposed particle flow field and show superior results compared to the histogram of oriented 3D-Gradients in spatio temporal volumes. The proposed method, when used for human action recognition, just needs human detection and does not necessarily require human tracking and figure centric bounding boxes. It has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions, 4 different views) action recognition datasets.Third, we propose using the scene context information obtained from moving and stationary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of Words framework, to solve the action recognition problem on a large (50 actions) dataset with videos from the web. We perform a combination of early and late fusion on multiple features to handle the huge number of categories. We demonstrate that scene context is a very important feature for performing action recognition on huge datasets.The proposed method needs separation of moving and stationary pixels, and does not require any kind of video stabilization, person detection, or tracking and pruning of features. Our approach obtains good performance on a huge number of action categories. It has been tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach on the KTH and HMDB51 datasets for comparison.Finally, we focus on solving practice problems in representing actions by bag of spatio temporal features (i.e. cuboids), which has proven valuable for action recognition in recent literature. We observed that the visual vocabulary based (bag of video words) method suffers from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions; (v) it is unable to perform recognition frame by frame. In order to overcome these drawbacks, we propose a framework to index large scale motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and recognition. The recognition comprises of the following two steps: 1) recognizing the local features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to label the action. It can also provide localization of the action. Since it does not require feature quantization it can efficiently grow the feature-tree by adding features from new training actions or categories. Our method provides an effective way for practical incremental action recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based data structure. We tested our approach on two publicly available datasets, the KTH dataset and the IXMAS multi-view dataset, and achieved promising results.
Title: ACTION RECOGNITION USING PARTICLE FLOW FIELDS.
36 views
9 downloads
Name(s): Reddy, Kishore, Author
Shah, Mubarak, Committee Chair
Sukthankar, Gita, Committee Member
Wei, Lei, Committee Member
Moore, Brian, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2012
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In recent years, research in human action recognition has advanced on multiple fronts to address various types of actions including simple, isolated actions in staged data (e.g., KTH dataset), complex actions (e.g., Hollywood dataset), and naturally occurring actions in surveillance videos (e.g, VIRAT dataset). Several techniques including those based on gradient, flow, and interest-points, have been developed for their recognition. Most perform very well in standard action recognition datasets, but fail to produce similar results in more complex, large-scale datasets. Action recognition on large categories of unconstrained videos taken from the web is a very challenging problem compared to datasets like KTH (six actions), IXMAS (thirteen actions), and Weizmann (ten actions). Challenges such as camera motion, different viewpoints, huge interclass variations, cluttered background, occlusions, bad illumination conditions, and poor quality of web videos cause the majority of the state-of-the-art action recognition approaches to fail. An increasing number of categories and the inclusion of actions with high confusion also increase the difficulty of the problem. The approach taken to solve this action recognition problem depends primarily on the dataset and the possibility of detecting and tracking the object of interest. In this dissertation, a new method for video representation is proposed and three new approaches to perform action recognition in different scenarios using varying prerequisites are presented. The prerequisites have decreasing levels of difficulty to obtain: 1) Scenario requires human detection and tracking to perform action recognition; 2) Scenario requires background and foreground separation to perform action recognition; and 3) No pre-processing is required for action recognition.First, we propose a new video representation using optical flow and particle advection. The proposed ``Particle Flow Field'' (PFF) representation has been used to generate motion descriptors and tested in a Bag of Video Words (BoVW) framework on the KTH dataset. We show that particle flow fields has better performance than other low-level video representations, such as 2D-Gradients, 3D-Gradients and optical flow. Second, we analyze the performance of the state-of-the-art technique based on the histogram of oriented 3D-Gradients in spatio temporal volumes, where human detection and tracking are required. We use the proposed particle flow field and show superior results compared to the histogram of oriented 3D-Gradients in spatio temporal volumes. The proposed method, when used for human action recognition, just needs human detection and does not necessarily require human tracking and figure centric bounding boxes. It has been tested on KTH (six actions), Weizmann (ten actions), and IXMAS (thirteen actions, 4 different views) action recognition datasets.Third, we propose using the scene context information obtained from moving and stationary pixels in the key frames, in conjunction with motion descriptors obtained using Bag of Words framework, to solve the action recognition problem on a large (50 actions) dataset with videos from the web. We perform a combination of early and late fusion on multiple features to handle the huge number of categories. We demonstrate that scene context is a very important feature for performing action recognition on huge datasets.The proposed method needs separation of moving and stationary pixels, and does not require any kind of video stabilization, person detection, or tracking and pruning of features. Our approach obtains good performance on a huge number of action categories. It has been tested on the UCF50 dataset with 50 action categories, which is an extension of the UCF YouTube Action (UCF11) Dataset containing 11 action categories. We also tested our approach on the KTH and HMDB51 datasets for comparison.Finally, we focus on solving practice problems in representing actions by bag of spatio temporal features (i.e. cuboids), which has proven valuable for action recognition in recent literature. We observed that the visual vocabulary based (bag of video words) method suffers from many drawbacks in practice, such as: (i) It requires an intensive training stage to obtain good performance; (ii) it is sensitive to the vocabulary size; (iii) it is unable to cope with incremental recognition problems; (iv) it is unable to recognize simultaneous multiple actions; (v) it is unable to perform recognition frame by frame. In order to overcome these drawbacks, we propose a framework to index large scale motion features using Sphere/Rectangle-tree (SR-tree) for incremental action detection and recognition. The recognition comprises of the following two steps: 1) recognizing the local features by non-parametric nearest neighbor (NN), and 2) using a simple voting strategy to label the action. It can also provide localization of the action. Since it does not require feature quantization it can efficiently grow the feature-tree by adding features from new training actions or categories. Our method provides an effective way for practical incremental action recognition. Furthermore, it can handle large scale datasets because the SR-tree is a disk-based data structure. We tested our approach on two publicly available datasets, the KTH dataset and the IXMAS multi-view dataset, and achieved promising results.
Identifier: CFE0004626 (IID), ucf:49923 (fedora)
Note(s): 2012-08-01
Ph.D.
Engineering and Computer Science, Electrical Engineering and Computer Science
Doctoral
This record was generated from author submitted information.
Subject(s): action recognition
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0004626
Restrictions on Access: public 2013-02-15
Host Institution: UCF

In Collections