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ABSTRACT 

Slow-servo single-point diamond turning as well as advances in computer controlled 

small lap polishing enable the fabrication of freeform optics, specifically, optical surfaces for 

imaging applications that are not rotationally symmetric. Freeform optical elements will have a 

profound importance in the future of optical technology. Orthogonal polynomials added onto 

conic sections have been extensively used to describe optical surface shapes. The optical testing 

industry has chosen to represent the departure of a wavefront under test from a reference sphere 

in terms of orthogonal ű-polynomials, specifically Zernike polynomials. Various forms of 

polynomials for describing freeform optical surfaces may be considered, however, both in optical 

design and in support of fabrication. More recently, radial basis functions were also investigated 

for optical shape description. In the application of orthogonal ű-polynomials to optical freeform 

shape description, there are important limitations, such as the number of terms required as well 

as edge-ringing and ill-conditioning in representing the surface with the accuracy demanded by 

most stringent optics applications. The first part of this dissertation focuses upon describing 

freeform optical surfaces with ű-polynomials and shows their limitations when including higher 

orders together with possible remedies. We show that a possible remedy is to use edge-clustered-

fitting grids. Provided different grid types, we furthermore compared the efficacy of using 

different types of ű-polynomials, namely Zernike and gradient orthogonal Q-polynomials. In the 

second part of this thesis, a local, efficient and accurate hybrid method is developed in order to 

greatly reduce the order of polynomial terms required to achieve higher level of accuracy in 

freeform shape description that were shown to require thousands of terms including many higher 

order terms under prior art. This comes at the expense of multiple sub-apertures, and as such 
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computational methods may leverage parallel processing. This new method combines the assets 

of both radial basis functions and orthogonal phi-polynomials for freeform shape description and 

is uniquely applicable across any aperture shape due to its locality and stitching principles. 

Finally in this thesis, in order to comprehend the possible advantages of parallel computing for 

optical surface descriptions, the benefits of making an effective use of impressive computational 

power offered by multi-core platforms for the computation of ű-polynomials are investigated. 

The ű-polynomials, specifically Zernike and gradient orthogonal Q-polynomials, are 

implemented with a set of recurrence based parallel algorithms on Graphics Processing Units 

(GPUs). The results show that more than an order of magnitude speedup is possible in the 

computation of ű-polynomials over a sequential implementation if the recurrence based parallel 

algorithms are adopted. 
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CHAPTER ONE: INTRODUCTION  

Freeform optical components are going to play key roles in the future of optical systems. 

The ability of these components by definition to depart from rotational symmetry, for the first 

time, enables truly folded geometries with excellent overall optical correction. These properties 

enable optical systems with reduced physical sizes through a reduction in element count, with the 

added property of being lighter weight. In addition to the gain in compactness and reduction in 

weight, optical designs leveraging freeform components may also yield performance 

improvements in terms of a gain in étendue, where étendue may be thought of as the product of 

the field of view and aperture size of the system at a given focal length. In layman terms, as the 

étendue increases the efficiency of the system may increase together with the resolution or the 

ability to image a larger field of view or both. One of the early types of optical systems to take 

advantage of the new fabrication capabilities that enable freeform surfaces is unobstructed all-

mirror systems that are being designed enabling ultra-broadband imaging. Some pioneering 

examples of freeform optical elements have started to emerge in Head Worn Displays (HWDs) 

[1], projection systems [2], and infrared imagers [3]. As Rolland and Thompson discuss in a 

recent Optics and Photonics News article, there is a revolution occurring in the field of optical 

design that is mainly driven by two concurrent but unrelated major developments requiring the 

optical design community to develop new methods and tools to describe freeform optical 

surfaces [4].  

A first development, prior to even considering freeform optical components but providing 

some guidance to their development, resulted from discovering that a power series representation 
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introduced by Abbe [5] for aspheric optics is failing in part because of the lack of 

orthonormalization. When new polishing methods, small tool polishing, ion beam polishing, and 

magneto-rheological finishing (MRF) polishing have come to be adopted throughout the 

industry, this issue has become apparent because rotationally symmetric aspheres were started to 

be favored in challenged optical designs to insure least number of elements while meeting high 

performance specification such as for the compact cell phone high resolution cameras and at the 

other end of the spectrum lithography lenses. New methods to describe optical aspheres were 

proposed by Forbes in place of historical power series, the Q
bfs 

and Q
con

 polynomials [6], in order 

to address this issue. Recent work shows that designing with Q-polynomials together with slope 

constraints that may easily be constrained in the optimization merit function given the unique 

description of these polynomials, yield optics that is less sensitive to alignment and assembly, a 

huge gain for higher yield in optical manufacturing that will lower cost while maintaining or 

improving quality [7, 8].  

The second development is the introduction of the slow-servo axis in the diamond turning 

based manufacturing of optical elements [9]. This development enables the controlled 

manufacture of optical freeform surfaces, which are not intrinsically rotationally symmetric. The 

initial impact of this development is to broaden the definition of optical surfaces from a conic 

surface plus the power series to basis functions that may describe freeform surfaces. Cakmakci et 

al. proposed and implemented local shape descriptors, in the form of Gaussian basis functions 

that appear well suited for local shape description [10, 11]. Recently gradient orthogonal 

Q-polynomials as an addition to a best fit sphere have been proposed to describe optical freeform 

surfaces in the context of optical manufacturing [12]. Together with the recurrence relations, 
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they may also provide an efficient and robust optical surface description capability that may also 

be leveraged in design.  

One approach to specifying a freeform surface is to use a base conic surface plus Zernike 

polynomials to describe the non-rotationally symmetric components [13]. Zernike polynomials 

are used as a pervasive means of representing optical surface deformations in optical testing, as 

they are complete and orthogonal over the unit circle. Moreover, the lower order Zernike terms 

are readily identified with Seidel and H.H. Hopkins aberrations [14, 15, 16] that are used in 

optical design. However, important limitations in the optical surface descriptions with full 

aperture Zernike polynomials exist: It may be the case that higher order Zernike terms are 

required in order to represent optical surfaces with the accuracies required by most stringent 

optics applications. High order terms possess numerical problems in implementation because of 

round-off errors. Recurrence relations are adopted as a remedy for this case as in any other 

orthogonal polynomials [17]. Even when the problems with the numerical round-off errors are 

bypassed, it is anticipated that the thousands of terms required to describe a freeform surface 

with subnanometer accuracy is a bottleneck for the optical designers. A second limitation is 

severe edge ringing associated with ű-polynomial surfaces. Edge clustered fitting grids are 

proposed to overcome the edge-ringing successfully with ű-polynomial surfaces [18]. Although 

for optical design purposes it is suitable to apply effective edge clustered ray grids, for testing 

purposes, a clustered edge grid may not be easy to implement.  

As opposed to full-aperture ű-polynomials as optical freeform surface description, local, 

multi-centric, additive Radial Basis Functions (RBFs) were recently investigated for describing 
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optical freeform surfaces [10, 11, 19]. While orthogonal ű-polynomials are defined over only 

specific geometries, such as a circle, RBFs are more general, conforming to any aperture shape. 

Although the orthonormalization of ű-polynomials over other specific aperture shapes are 

possible [20], RBFs constitute one basis set that applies to any aperture shape. Forsaking the 

orthogonality of ű-polynomials, RBFs offer simplicity and geometric flexibility in terms of 

aperture shapes. However RBFs have their own drawbacks as well. They may suffer from 

numerical ill-conditioning when their shape is flat or excessive numbers of them are used to 

describe freeform surfaces. 

Motivation 

 As the optics manufacturing industry is forging ahead in the advancement of their 

fabrication methods, the mathematical models to describe optical surfaces are required to be 

retooled and redefined. The major motivation for this work is how to best efficiently describe 

general optical surface shapes with different aperture geometries and uncommon features. In 

other words, with the optics manufacturing industry presenting itself with the ability to fabricate 

most general freeform optical elements, we pose the question of how to best economically and 

accurately represent general optical shapes. As an impact of these developments, optical 

designers need to answer the following questions: Does the sampling of the surface have any 

effect on the accuracy of the description of the optical surface? Is there a way to describe a 

freeform surface with minimum number of basis elements, as few as 25 terms of ű-polynomials, 

while at the same time achieving subnanometer accuracy? Do they need to change the basis for 

the description of freeform elements if they work on an aperture shape different than a circle? Is 
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it possible to use highly threaded many-core computational platforms to reduce the 

ű-polynomials computation time through parallel computing? In this thesis, we investigate the 

possible answers for the above questions while proposing new methods for the description of 

optical freeform surfaces. We also report on the merits and limitations of working with different 

basis for freeform optical surfaces under different sampling patterns in addition to devising and 

implementing parallel algorithms for ű-polynomials computation. 

Research Summary 

In the first part of this thesis, we show that the ray grids commonly used in sampling a 

freeform surface, such as a uniform hexagonal sampling grid, to form a database from which to 

perform a ű-polynomial fit is limiting the efficacy of computation. We present an edge clustered 

fitting grid that effectively suppresses edge ringing that arises as the ű-polynomials adapt to the 

fully nonsymmetric features of the optical surface [18]. Secondly, we show that a substantial 

number of Zernike (ű-polynomial) terms, sometimes thousands, is required in order to achieve 

subnanometer accuracy. Prior to arriving to the appropriate number of terms, intermediate results 

with insufficient number of terms exhibit high departure errors at the edge. The impact of this 

edge-clustered fitting grid on the reduction of edge-ringing and the improvement of surface 

representation by several orders of magnitude is also compared with uniform hexagonal subgrids 

centered on rectangular uniform grid, Chebyshev-based radial grids, and polar grids. 

  As part of an investigation of fitting grids for optical surface description, full aperture 

ű-polynomials, specifically Zernike and recently introduced gradient orthogonal Q-polynomials, 

are also investigated in a comparative manner in terms of efficacy of optical surface description 
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[21]. Results establish the similarity of ű-polynomials for accurately describing freeform 

surfaces under stringent conditions (i.e. a high departure surface with high local slopes), which is 

a critical step in the future application of these tools in advanced optical system design and 

fabrication. 

 In the second part of this thesis, we developed an efficient, accurate, and localized hybrid 

method combining assets of both RBFs and ű-polynomials for freeform shape description, which 

makes it uniquely applicable across any aperture shape due to its domain decomposition and 

local stitching properties [19]. Results show that the proposed method yields subnanometer 

accuracy with as few as 25 terms ű-polynomials in each subaperture. Subnanometer accuracy is 

required for the stringent conditions of lithography and related precision optics applications. 

Under less stringent conditions, such as for illumination optics, it is shown that the necessary 

accuracy is achieved using as few as 16 terms of local ű-polynomials in each local partition. 

 Finally in this dissertation, we have devised and implemented recurrence based parallel 

algorithms for ű-polynomials in order to take advantage of parallelism on highly threaded 

computational platforms i.e. Graphical Processing Units (GPUs). The results show that more 

than an order of magnitude improvement is achieved in computational time over a sequential 

implementation if recurrence-based parallel algorithms are adopted in the computation of the 

ű-polynomials [50].  

Dissertation Outline 

 In the next chapter, we present a review of state-of-the-art methods for the description of 

optical surfaces. The chapter starts with a description of the orthogonal 1D ű-polynomials for 
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aspheric optical elements. The recurrence relations for the slope orthogonal Q-polynomials as 

descriptors of rotationally symmetric aspheres are reviewed in this first section. Chapter 2 

continues with the presentation of freeform (i.e. 2D and non-rotationally symmetric) 

ű-polynomials. First, the set of Zernike polynomials as a descriptor for freeform elements is 

explained, followed by the recently introduced gradient-orthogonal Q-polynomials. The 

recurrence relations for efficient and accurate computation of these polynomials are given in the 

same section. In the next section, RBFs are introduced along with their numerical properties and 

QR-based algorithms for this optical surface description. 

 Chapter 3 focuses upon efficient ray grids for the description of freeform optical 

elements. The first section describes the least squares fitting process currently used in the 

preliminary optical design work with optical freeform surfaces and how low order ű-polynomials 

matches the Seidel wavefront aberrations. In the following section, four different ray grids are 

described: uniform hexagonal subgrids centered on a uniform rectangular grid, a polar grid with 

Chebyshev-based radial weighing, a uniform random point grid, and an edge-clustered random 

point grid. In the last section, numerical experiments with different test cases as the examples of 

highly varying freeform optical surfaces are given. 

 In Chapter 4, we have compared two different ű-polynomials in terms of least squares in 

order to understand the freeform description capabilities of these two polynomial sets under two 

different sampling ray grids, uniform hexagonal subgrids centered on the uniform rectangular 

grid and an edge-clustered fitting grid. In the first section two different ray-grids and test cases 

are presented. In the numerical experiments section, two different test cases are described with 
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increasing number of basis elements in order to reveal any similarities or differences between 

these two methods in terms of least-squares fitting of freeform optical surfaces. The last section 

is an inquiry of the effect of the height of the surface features on the number of ű-polynomials 

terms required and the impact on the residual peak-to-valley (PV) fitting errors. 

 In Chapter 5, a local, hybrid, efficient and accurate optical surface description 

methodology is proposed and shown to have striking significance in the reduction of the order of 

ű-polynomials terms used for freeform surface description. In the first section, the hybrid RBF 

and local ű-polynomials method is presented along with a description of its algorithm. In the 

next section a variation of the method with local Gaussian RBFs with local shape optimization 

instead of local ű-polynomials is described. Finally in the numerical experiments section a 

complex freeform surface is represented with the hybrid RBFs and local ű-polynomials method. 

Results show that the surface may be described with as few as 25 terms in each subaperture for 

subnanometer accuracies. Also in this section the trade-off between the local number of basis 

elements in the local ű-polynomials fits and the size of the subapertures is shown with a brief 

comparison to its shape optimized local Gaussian RBF counterpart.  

 In Chapter 6, recurrences based parallel algorithms, devised and implemented on a highly 

threaded GPU for the acceleration of computation of ű-polynomials, are presented. In the first 

section, general purpose computational methods with GPUs are described along with the brief 

review of GPU architectures. In the second section, in addition to the pseudo-codes, some 

parallel algorithms of ű-polynomials constructed upon the recurrence relations are shown with a 

detailed description. In the final section of this chapter, numerical experiments including the 
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effect of the ray grid size and ű-polynomials order on the computation time are carried out as 

well as the validation of the parallel algorithms and speedups through the parallelism. 

Chapter 7 summarizes the main findings and major contributions of this research effort 

along with possible future directions for the mathematical and computational methods for 

freeform optical surface description. 
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CHAPTER TWO: POLYNOMIALS AND RADIAL BASIS FUNCTIONS  AS 

OPTICAL SURFACE SHAPE DESCRIPTORS 

In this chapter, we review the state-of-the-art polynomials and radial basis functions 

(RBFs) for freeform optical surface description. Historically, power series expansions with a 

conic section of choice are used to describe optical surfaces, which until recently have been 

dominantly rotationally symmetric, or portions of rotationally symmetric parts, with some 

limited use of anamorphic aspheres. Failures in this mathematical description model emerged 

early in 2000 when commercial optical software unwittingly provided optical designers with 

more aspheric terms than could be support with 32-bit computing. This occurrence then posed 

the question of how to best describe optical surfaces with high accuracy and minimal cost. The 

mathematical propositions for this question are reviewed in the next sections. We start with the 

recently introduced slope orthogonal Q-polynomials [6] for rotationally symmetric optical 

surfaces. We then review Zernike polynomials as the well-known and currently emerging basis 

for ű-polynomials freeform optical surface descriptions, which are not rotationally symmetric. In 

the final section of polynomials applied to the description of optical surfaces for optical design, 

gradient orthogonal Q-polynomials are described along with their recurrence relations. The last 

section concludes this chapter with a review of RBFs and their stable evaluation with a 

QR-based approach. 

Slope-orthogonal Q-polynomials for Aspheres 

 The most widely used and conventional method for characterization of optical surface 

shape, whether that shape is rotationally symmetric or not, is a power series expansion 
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introduced by Abbe [5] almost a century ago. This power series representation is made more 

effective with a base conic section of choice as conic sections have some useful optical 

properties. Hence an optical surface is most generally represented as follows 
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In above Eq. (2.1), ɟ and z represents the standard cylindrical coordinates, ə represents the conic 

constant of choice, c stands for the curvature of the conic. This representation of an optical 

surface is completed with the aperture radius, ɟmax.  For aspheric surfaces, because of the 

rotational symmetry, the sag, z(ɟ) has only one independent variable, ɟ. For freeform surfaces 

however, there is also an angular dependence of the sag function, which is represented as z(ɟ,ɗ). 

 Although the expression in Eq. (2.1) yields a complete set for approximating the optical 

surfaces for the required accuracies provided that m is allowed to be large enough, the monomial 

basis, i.e. mr , is numerically inefficient and provides the surface approximations through heavy 

cancellation of the terms, which leads to associated least squares approximation and the Gram 

matrix to become heavily ill-conditioned. One improvement is to apply normalization of the 

basis such as to adopt 
max

u r
r=  and second is to remove the degeneracies between the basis 

elements, which is to orthogonalize the basis. 

 Conditioning is related to the perturbation behavior of a mathematical problem and 

stability is related to the perturbation behavior of an algorithm [22]. Generally, a well-

conditioned problem is the one where a small perturbation in the data causes only negligible 
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changes in the solution. An ill-conditioned problem is the one where small changes in the data 

lead to an unacceptable change in the solution. In terms of numerical linear algebra, conditioning 

of a problem is measured with a condition number. Trefethen defines the condition number as 

follows [22]: 

 ñLet A be a nonsingular matrix, consider Ax=b, the problem of computing b, given x, has 

condition number, 
1

K
-

¢A A , with respect to perturbations of x. The problem of computing x, 

given b, has the condition number, 
1K -¢A A  with respect to perturbations of b. The problem 

of computing x, when b is fixed, 1-
=x A b , has the condition number 

1
K

-
=A A  with respect to 

perturbations in A, where .  represents the norm of a matrix.ò 

 A is ill -conditioned when the condition number, K, is large, and similarly A is well-

conditioned when the condition number is small. It is always expected to lose 10log K  digits in 

the solution of a least square system if the least square matrix is ill-conditioned [22]. An 

orthogonal basis, since all the basis elements are orthogonal to each other and the associated dot 

product is zero, contains no degenerate or near-degenerate basis elements, which leads to well-

conditioned approximation matrices. The trade-off between the ill-conditioning of a matrix and 

the accuracy of the solution of the least squares system is best captured through an example. As 

such, in the following example, the orthogonal Chebyshev polynomials are compared with the 

monomials (power series) in terms of the least square approximation of a smooth surface [23].  

 In this section, we present a summary of the example given in [23] to further clarify the 

differences between the monomials and an orthogonal basis. Letôs consider that example [23]: a 
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1µm bump over a 60 mm aperture that is fitted with 9 monomials and 9 orthogonal Chebyshev 

polynomials. The shape of the function is given in Figure 1. The function to be fitted is an 

exponential of form, 
2

81( )g e
r

r
-

= . The monomials used for the fit are { 1,ɟ
2
, ɟ

4
,é ɟ

16
}. The 

Chebyshev polynomials are defined to be  

 [ ]( ) cos arccos( ) ,mT mr r=  (2.2) 

where m is even. 

 

Figure 1 Sample fitted with monomials and Chebyshev Polynomials, adapted from [23]. 

When we carried out the least squares approximation, coefficients for the monomials are found 

out to be {999.5, -11024.9, 59072.8, -196235.6, 427931.4,-608789.4, 540151.6,-269848.7, 

57744.7}nm.  

The condition number for this least squares approximation matrix is 5.4711e+5. So, we expect to 

lose 6 digits of accuracy because of the ill-conditioning associated with this monomial basis, i.e. 

log(5.4711e5) is about 5.74. We see that there is heavy cancellation between the fit coefficients. 

Even if the fit is required to be within a 1 nm tolerance and the test surface is 1 micron in height, 

the coefficients are thousands of microns. More importantly, since the approximation matrix has 
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a non-empty null space, there are infinitely many solutions to this problem. Furthermore, 

changing the coefficients with a scaled version of the nullspace vectors constitutes more 

solutions for this problem and does not effectively change the result. For example Forbes [23] 

mentioned that 539995 could be replaced with 539995-212992, and the fit is still within 1 nm 

tolerance. 

Instead, when doing the least squares fit with orthogonal Chebyshev basis, the fit coefficients are 

given as {173.6, -314.0, 234.1, -145.5, 76.9, -34.8, 14.0, -4.7, 1.8}  nm [23]. The condition 

number for this orthogonal Chebyshev least squares matrix is just 4. Thus all of the digits in this 

list are significant, i.e. log(4) is 0.6, and these coefficients cannot be changed without changing 

the result of the fit. Since the condition number is very small compared to that of the monomials, 

this matrix is well-conditioned. This representation of the fit is also more efficient [23]. 

Furthermore, the coefficients do not change if we include one more basis element to the 

approximation matrix in the next approximation. If we truncate the number of basis elements at 

some point, such as 7, then we would expect to have a fit error about the shape and size of the 8
th
 

basis element, since this spectrum of coefficients decreases in magnitude. For example, we will 

expect to lose about 2 nm of accuracy if we truncate the last basis element from the 

approximation list, since all the digits in this list count. The null space of this approximation 

matrix is empty (a well-conditioned problem), which means there is a single solution to this 

approximation problem. The fit coefficients do not change no matter how many basis elements 

are used in the fit. For example, we carried out the fit with 15 Chebyshev polynomials, and the 

coefficient list is 
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{173.6, -314.0, 234.1, -145.5, 76.8, -34.9, 14.0, -4.9, 1.6, -0.5, 0.1, -0.03, 0.006, -0.001, 

0.0003}nm. 

By examining the above list, we expect to have a subnanometer tolerance in the fit if we had just 

used 11 basis elements, since the fit coefficient of the 12
th
 basis element is just -0.03 nm.  

Thus, although the monomial basis is practically useless after a few terms, for example 6, 

on the other hand, we can use an orthogonal basis such as Chebyshev basis to arbitrary 

accuracies significantly set by machine precision. Another useful interpretation of fitting with an 

orthogonal basis is that the sums of squares of these fit coefficients result in the mean square sag 

at that point.  

 After observing that monomial basis totally fail due to ill-conditioning of the associated 

Gram matrix, and considering the requirements of the optical interferometry testing, Forbes 

proposed two sets of orthogonal polynomials in [6]. In the following, we will summarize Forbes 

article [6] for Q-polynomials, namely Q
con

 and Q
bfs

 polynomials.  

 Instead of using the monomials that are given in Eq. (2.1), we could have replaced the 

monomials with a set of orthogonal polynomials, Q
con
ôs. Then, a surface sag can be represented 

with a conic base plus the departure from the conic, such as given as Eq. (2.3), also in [6]. In this 

way, ill-conditioning of the Gram matrix is removed since the orthogonality will  not allow it to 

be ill-conditioned. 
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 (2.3) 
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In Eq. (2.3), the first part of the equation represents the base conic, and Dcon(u) represents the sag 

departure from the conic. All other variables are as the same as Eq. (2.1). The departure from the 

conic is represented in [6] as  

 () ( )4 2

0

.
M

con

con m m

m

D u u a Q u
=

= ä  (2.4) 

Q
con

 polynomials are related to the Jacobi polynomials such that the associated Gram matrix G is 

diagonal. Under a unity weight function, the dot product between two basis elements forms the 

contents of the Gram matrix shown in [6] as follows 

 ( ) ()
1

8 2 2 4

0

( ) 2 ( ) ,con con con con

nm m n m nG u Q u Q u Q x Q x x dx= =ñ  (2.5) 

where angle brackets denote a weighted average, and the dot product under the unit weight 

reduces the integral form given in Eq. (2.5). Since these Q
con

 polynomials are orthogonal, the 

associated Gram matrix is diagonal. The relationship between the orthogonal Q
con

 polynomials 

and Jacobi polynomials, P, is given in [6] as follows 

 
( )0,4

( ) (2 1).con

m mQ x P x= -  (2.6) 

A few initial polynomials are {1, 6x-5, 28x
2
-42x+15 é}. In Figure 2, we show the first 7 

polynomials from this list.  
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Figure 2 The first seven orthogonal Q
con

 polynomials, adapted from [6]. 

Similar to the generation of Q
con

 orthogonal polynomials, Forbes derived orthogonal Q
bfs

 

polynomials. Two main significant differences between Q
bfs 

and Q
con

 are the use of a best-fit 

sphere as the base surface for Q
bfs

 (as opposed to a conic for Q
con

) and the orthogonalization in 

slope for Q
bfs

 as opposed to sag for Q
con

, motivated thereafter. First, aspheric surfaces are most 

cost effective when their deviation from a best fit sphere is restrained to meet the needs of 

metrology and fabrication, thus the choice of a sphere for the base surface. Moreover 

significantly, limiting the absolute maximum slope of the departure leads to enhancements in 

manufacturability of aspheres as it extends the slope range over which metrology can be 

successfully performed and reduces the sensitivity to alignment. Thus a representation such as 

Q
bfs

, where the square root of the sum of the coefficients squared represents the Root Mean 

Square (RMS) slope error is most convenient as this sum may be computed on the fly during 
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optimization of a surface in lens design. As such, the maximum slope can also be simultaneously 

constrained as the RMS and max slope errors are intimately related.  

Most fabrication shops use for the definition of the best-fit sphere the one that touches the 

surface at its axial point and around its perimeter. The best-fit sphere curvature is effectively 

calculated in [6] as  
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( )( )
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r r
=

+
 (2.7) 

where f(ɟmax) is the sag at the perimeter, and ɟmax is the aperture radius. The sag can then be 

written [6] as  
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where the departure from the best fit sphere is defined in [6] as 
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In Eq. (2.9), u is the normalized radial coordinate. Note that by having the term u
2
(1-u

2
) appear 

in the numerator, the departure from the best fit sphere is as required zero at the edge and its 

axial point, the denominator is the cosine of the angle between the normal of the best-fit sphere 

and the optical axis. In order to construct the RMS slope of the departure along the normal from 
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the sum of squares of the coefficients, am, the slope functions, Sm(u) must be orthogonal. The 

slope functions are defined in [6] to be 

 () ( ) ( ){ }2 2 21 .bfs

m m

d
S u u u Q u

dx
= -  (2.10) 

A dot product with a weighted function is defined such that the orthogonal polynomials do not 

grow unboundedly towards the ends of the interval, 
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m nS u S u w u udu

w u udu

ñ

ñ

 (2.11) 

where Sn and Sm are orthogonal slope functions and w(u) is the weight function, (u
2
(1-u

2
))

-0.5
 [6]. 

With this dot product, the first function can be taken to be a constant and normalized. Then the 

new members of the orthogonal Q
bfs

 polynomials can be made orthogonal to all the previously 

computed Q
bfs

 polynomials. An appropriate procedure for this orthogonalization is to use a 

modified Gram-Schmidt algorithm. The first few of the polynomials are  

 ( ) ( )
1 2

1, 13 16 , 29 4 25 19 ,... .
9519

x x x
ë ûî î

- - -è øì üê ú
î îí ý

 (2.12) 

In Figure 3, we have shown seven of the slope orthogonal Q
bfs

 polynomials. The advantage of 

using this set of orthogonal polynomials as compared to that of monomials are described with 

examples in [6, 23, 24]. As an application example, Ma et al. recently showed that the design of 

a 28 element lithographic lens and an optimization integrated RMS slope constraint resulted in 
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an order of magnitude decrease in overall sensitivity to tilts and decenters with Q-polynomials 

[7]. Ma et al. also reported similar findings in the investigation of a high-resolution cell phone 

camera [8]. 

 

Figure 3 The first seven slope orthogonal Q
bfs

 polynomials, adapted from [6]. 

 

In order to efficiently calculate the Q-polynomials, Forbes used recurrence relations. 

Often used with orthogonal polynomials, recurrence relations provide simplicity and stability for 

the numerical calculations that would otherwise be affected by numerical cancellation and round-

off errors leading to an ill-conditioned system of equations. For a Q
con

, a standard 3-term 

recurrence relation, defined in [17], is given as 

 ( )( ) ( ) ( )2 2 2 2

1 1 2 3 1 .con con con

m m m m m mQ u rv rv u Q u rv Q u+ -= + -  (2.13) 
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In Eq. (2.13), u is the normalized radial coordinate, 
max

u r
r= , rv1m, rv2m, and rv3m are recurrence 

variables defined below in Eqs. (2.14)-(2.16), and m starts at 1. The recurrence relation is 

initialized with the first two polynomials, which are ( )20

conQ u  and ( )21

conQ u , 1 and 26 5u -

respectively. After initialization, any Q
con 

polynomial of order m can be computed with the 

recurrence relation whose variables are defined in [17] as 
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For the Q
bfs

 polynomials, however, there is no standard 3-term recurrence relation. Instead they 

satisfy an unconventional 3-term recurrence relation with a set of auxiliary polynomials, Pm(u
2
), 

[24]. The unconventional 3-term recurrence relation for Q
bfs

 polynomials is defined in [24] as 

 ( )
( ) ( ) ( )2 2 2
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The auxiliary polynomials, Pm(u
2
), are a special form of Jacobi polynomials which satisfy a 

conventional 3-term recurrence relation given in [24] as 

 ( )( ) ( ) ( )2 2 2 2

1 12 4 .m m mP u u P u P u+ -= - -  (2.18) 
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The recurrence relation in Eq. (2.18) is initialized with first two auxiliary polynomials, P0(u
2
) 

and P1(u
2
), which are 2 and 6-8u

2
, respectively. After initialization, any Pm(u

2
) of order m can be 

computed. 

 The unconventional 3-term recurrence relation given in Eq. (2.17), contains recurrence 

variables gm, hm-1, and fm+1. These variables can be found for each iteration of the recurrence 

relation progressively starting with m=2, f0=2, f1=19
0.5

/2, and g0=-0.5 and using the recursions 

given in [24] as  
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 ( )( )2 2

1 21 3 .m m mf m m g h- -= + + - -  (2.21) 

Once the variables and auxiliary polynomials defined above are computed, they can be iterated 

through the unconventional 3-term recurrence relation defined in Eq. (2.17) by first initializing 

the recurrence with the first two polynomials ( )20

bfsQ u  and ( )21

bfsQ u , which are 1 and 19
-0.5

(13-

16u
2
), respectively. All of the Q

bfs
 and Q

con
 polynomials illustrated in Figure 2 and Figure 3 are 

computed with the recurrence relations shown in this section. 
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Zernike Polynomials 

Zernike polynomials are orthogonal polynomials over the unit circle. Since their 

introduction by F. Zernike while developing the theory of phase-contrast microscopy in the 

1930s [13], Zernike polynomials have emerged as a pervasive means of describing as-fabricated 

optical surface deformations. More recently, Zernike polynomials have further emerged to 

illustrate the field dependence of the polynomial coefficients in rotationally symmetric optical 

systems [25]. In optical design and manufacturing, Zernike polynomial representations of surface 

departure, placed as an added layer on top of a conic surface, form an enabling fundamental basis 

as they are complete and orthogonal over the unit circle and, in addition, the lower-order terms 

are readily identified with the Seidel aberrations. Moreover, H.H. Hopkins wavefront aberration 

function may also be described in terms of Zernike polynomials [15]. The forms of the lower 

order Zernike polynomials and the associated optical wavefront aberrations are shown in detail 

in [26]. The Zernike polynomials provide a mapping between an optical surface under 

consideration and wavefront aberrations, central to optical system design. Overall, Zernike 

polynomials are one of the major tools in optical applications ranging from modeling optical 

surfaces to representing wavefront test data and defining residual error profiles. 

The Zernike polynomials are defined in standard form in Born and Wolf [27] as follows 
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where n>=m and m-n is even. Instead of the radial variable, ɟ, a normalized variable 
max

u r
r=  

may be adopted. This representation shows that Zernike polynomials are composed of Fourier 

series in angular direction. The radial polynomial in explicit form is given in [27] as 
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The radial polynomial shown above in Eq. (2.23) comprises even powers of the radial variable 

scaled with factorial coefficients. Radial polynomial is of power n, which contains no powers of 

ɟ less than m. Forbes in [17] presented another useful representation of the radial polynomial, 

which is first given in [28] 

 () ( )2 ,m m m

n nfR Zr r r=  (2.24) 

where 
m

nfZ is an orthogonal polynomial, which is of power nf =(n-m)/2. The Zernike polynomials 

are strongly related to orthogonal Jacobi polynomials to the extent that the radial polynomial is 

sometimes referred as one-sided Jacobi polynomial. Authors in [17, 28] depicted this relationship 

as 

 ( ) ( )( )0,2 22 1 ,
mm

nf nfZ Pr r= -  (2.25) 

where ( )0,m

nfP  is the Jacobi polynomial. This form of the radial polynomial is more concise 

compared to the explicit form given in Eq. (2.23). 
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In Boyd and Yu [29], where seven spectral methods were compared for approximations 

of surfaces, each methodôs virtues and drawbacks were listed; Zernike basis is listed as one of 

the best spectral methods due to its spectral convergence and fewer number of basis elements for 

the same accuracy as compared to that of the Chebyshev-Fourier basis. Although the Zernike 

polynomials are one of the best tools for representing wavefront data and optical surfaces, which 

may both be rotational symmetric or not, high-order terms become necessary for their 

representation. A representation based upon the explicit form of the Zernike polynomials given 

above in Eq.(2.23), especially for the higher-order terms, suffers from the round-off errors 

produced by numerical cancelation. This most often leads to ill-conditioned system of equations 

for the least squares procedures for surface approximations. Author of [17] summarizes this 

situation as ñIt has not been generally appreciated that, in practice, this is a road to grief.ò 

Thanks to the relationship with the Jacobi polynomials given in Eq.(2.25), Zernike 

polynomials satisfy a conventional 3-term recurrence relation. The standard 3-term recurrence 

relation for Zernike polynomials is given in [17] as  

 ( )2 2 2 2

1 1 2 3 1( ) ( ) ( ),m m m

nf nf nf nf nf nfZ u rv rv u Z u rv Z u+ -= + -  (2.26) 

where the u represents the normalized radial coordinate as before, and rv1nf, rv2nf, and rv3nf are the 

recurrence variables. For each recurrence relation iteration, the recurrence variables need to be 

computed. They are defined in [17] as 
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with s=m+2nf. For each azimuthal order m, this recurrence relation is initialized with ( )20

mZ u  

and ( )21

mZ u , which are 1 and [(m+2)u
2
-(m+1)], respectively. The recurrence relation then can 

be iterated for any order of Zernike polynomials. Forbes states that the recurrence relations not 

only remove the round-off errors in the computation of the polynomials in explicit form, thus the 

ill -conditioning of the least squares and Gram matrix, but also they provide computational 

advantages by reducing the computational cost from a O(M
2
) process to a O(M) process [17]. In 

Figure 4, a high-order Zernike term ( )0 2

25Z u
 
is shown with its associated round-off errors if the 

explicit form is followed, and the remedy for round-off errors, the recurrence relation. 

 

Figure 4 (a) The round off errors present in the Zernike polynomial ( )0 2

25Z u  in explicit 

computation; (b) The recurrence relation removes the numerical artifacts, adapted from [17]. 
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By looking at Figure 4 above, we can clearly see that large numerical cancelations lead to the 

round off errors making the polynomial towards the edge unstable, off almost two orders of 

magnitude, and of chaotic sign. In Figure 4, we also observe that the recurrence relation 

computes the polynomial with the exact magnitude and correct oscillations.  

To make matters more explicit, we present another example in two-dimensional form 

shown in Figure 5. In Figure 5(a) a high-order Zernike with its round-off errors produced by 

numerical cancellations is shown and the accuracy in the computation is evidently off by a full 

order of magnitude. Fine scale details are not observed if the explicit form of the polynomial is 

used in the computation. However when the recurrence relation defined in Eq. (2.26) is used, the 

polynomial peaks at one at the edge of the normalized aperture and clear sine-like details are 

present in the computation of the polynomial. 

 

 

Figure 5 (a) Numerical ill-conditioning associated with ( )4 2

22Z u ; and recurrence relation 

correctly computes ( )4 2

22Z u (b). 
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The ill-conditioning associated with the explicit form of Zernike polynomials are also 

investigated by Boyd and Yu [29]. They have compared the dot product of the radial polynomial 

with itself for both the explicit power series representation and a 3-term recurrence relation. We 

have shown Figure 3 of their paper [29] for illustration of the ill-conditioning of the Zernike 

polynomials in explicit form in Figure 6. 

 

Figure 6 The effect of recurrence relations on the accuracy of the dot product of Zernike 

polynomials for increasing order, n, adapted from Boyd and Yu [29]. 

 

In Figure 6, authors presented the errors in evaluating the dot product of a radial component of 

the Zernike polynomial with itself for the increasing powers of n, while keeping the azimuthal 

variable, m=4 for both explicit and recursive evaluations. The accuracy of the dot product is lost 

as the degree of the polynomial is increased with the explicit power series computation, which is 

highly ill -conditioned and unstable for large n. On the other hand, the recurrence relation 
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provides a stable computation and preserves its accuracy even for the larger degrees of the 

polynomials. Concisely, the orthogonality of Zernike polynomials is maintained with the 

recurrence relation even for the higher degrees because of the stability of the recursion. 

 Similar to the slope orthogonal polynomials, an optical surface characterization based 

upon Zernike polynomials with the help of a best-fit sphere is represented as  
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where z(ɟ,ɗ) represents the sag of the surface, as the surface is not necessarily symmetric, cbfs 

represents the curvature of the best fit sphere, ( )2m m

nu Z u  represents the standard Born and Wolf 

Zernike polynomials of order n [27], and u is the normalized radial coordinate. 

Gradient Orthogonal Q-polynomials 

Recently a new set of orthogonal polynomials over a circular aperture has been 

developed by Forbes, orthogonalized with respect to the mean square gradient over an enclosing 

circular aperture with the goal of facilitating measures of manufacturability, e.g. optical testing, 

pad polishing [12]. These polynomials will be referred to in this text as gradient-orthogonal 

Q-polynomials following from the Q-polynomial form developed earlier for rotationally 

symmetric aspheric surfaces. Since the common method to express an optical surface is to define 

the departure of the surface from its best fitting conic with an orthogonal set of polynomials, 

Forbes decided to conform to this methodology in the definition of gradient orthogonal 

Q-polynomials in order to facilitate estimates for manufacturability of these surfaces and to 
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integrate with optical design environments. Orthogonal polynomials have the advantage of 

expressing an optical surface as a spectrum of coefficients in decreasing order, which helps in 

interpreting the frequency content of an optical surface. In terms of optical manufacturing and 

testing of an optical surface, the shapes closer to a sphere are easier to produce. Thus the rate of 

change of departure of a surface along the local normal from its best fitting sphere must be 

specified and considered because the local principal curvatures are related to the derivatives of 

the departure. 

Similar to slope orthogonal Q
bfs

 polynomials, a two-dimensional freeform optical surface 

with gradient orthogonal Q-polynomials is represented in [12] as follows 
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where the departure from the best fit sphere is specified in [12] as  
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In Eq. (2.32), u represents the normalized radial coordinate as before, ɟmax is the radius of the 

enclosing circular aperture, ( )2bfs

nQ u  represents the slope orthogonal polynomials, ( )2m

nQ u  

represents the gradient orthogonal Q-polynomials, cbfs represents the curvature of the best-fit 

sphere. The entity within braces corresponds to the departure of the optical surface from its best-

fit sphere along the local normals of that sphere. The first line on top in Eq. (2.32) accounts for 
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the rotationally symmetric Q
bfs

 polynomials contributions to the departure along the normal, 

whereas the nonsymmetric contributions are defined with the gradient orthogonal Q-polynomials 

in the second line of the Eq. (2.32). The departure along the local normals of the best fitting 

sphere is converted to a sag deviation along the principal axis of interest by dividing it with the 

cosine of the angle between the principal axis and the local normal of the best-fit sphere, which 

is the square root in the denominator in Eq. (2.32). For a surface description, the truncation of the 

sums of the polynomials in Eq. (2.32) is carried out by selecting a truncation point, T, which 

constrains the highest degree of the polynomials, n+2m. 

In order to construct the gradient orthogonal Q-polynomials, Forbes made use of the fact 

that the mean square gradient of the normal departure from the best-fit sphere is given by the 

sum of the squares of the coefficients of the surface description in Eq. (2.32) [12], 
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where angle brackets define the mean of the entity over the aperture. The average of a function 

over the aperture is usually found by taking a double integral of the function with an appropriate 

weight. Forbes used the following function in [12] for defining the weights, 
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w u

u u
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-
 (2.34) 

Then the average over the aperture of a function, g(u,ɗ) is given in [12] by 
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Since the trigonometric modes for different azimuthal orders m and mô are orthogonal by 

definition, the radial parts of the polynomials need to be orthogonalized with Gram-Schmidt 

orthogonalization, with the constraint given in Eq. (2.33). Some of the orthogonal polynomials 

are given in [12]. We present here a couple of the first gradient orthogonal Q-polynomials for 

each azimuthal order m=1, 2, 3, and n=0, 1 as below: 
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In Figure 7, we have illustrated the cosine version of the gradient orthogonal Q-polynomials for 

different m and n values. We have plotted two polynomials from the sequence for each azimuthal 

order m. It is important to note that these polynomials are generated with the constraint that their 

gradients fields are orthogonal to each other. Their gradient fields are shown in Figure 8. The 

gradient is a vector. So the gradient for different points in the aperture forms a vector field that is 

shown in Figure 8. For each azimuthal order these gradients are orthogonal to each other and for 

Figure 8, it can be verified that the dot products of the gradients shown in each row are zero. 

Also when we examine the gradient orthogonal Q-polynomials shown in Figure 7 and their 

respective gradients in Figure 8, we can observe that when there are steep slopes in the 

Q-polynomial, the gradient field has a peak, and when there are flat regions, gradients are zero. 
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Figure 7 Cosine version of the gradient orthogonal Q-polynomials (a) m=1 n=1 (b) m=1 n=3  

(c) m=5 n=0 (d) m=5 n=2, adapted from [12]. 

 

Figure 8 Gradient fields of the gradient orthogonal Q-polynomials for the given m, n pairs, 

adapted from [12]. 
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In the generation of Figures 7 and 8, we have made use of the recurrence relations defined for 

gradient orthogonal Q-polynomials in [12]. Similarly to the slope orthogonal Q
bfs

 polynomials, 

gradient orthogonal Q-polynomials satisfy an unconventional 3-term recurrence relation with the 

help of a set of auxiliary orthogonal polynomials. 

For each azimuthal order m, the auxiliary polynomials ( )2m

nP u  satisfy a standard 3-term 

recurrence relation given in [12] as 

 ( )2 2 2

1 1( ) ,m m m m m m

n n n n n nP u A B u P u C P+ -
è ø= + -ê ú  (2.37) 

where the recurrence variables are defined in [12] as 
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 ( )( )( )24 1 2 2 3 .m

nD n m n m n= - + - + - (2.41) 

The recurrence relation shown in Eq. (2.37) is initialized with 
2

0 ( ) 1/ 2mP u =  and n=1, and the 

first polynomial in the set, 
2

1 ( )mP u . Special handling is required for when m=1, and 
2

1 ( )mP u is 

defined to account for the special case given in [12] as follows 
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By iterating through n, any order n of the auxiliary polynomials can be generated for each 

azimuthal order m. Once auxiliary polynomials are computed then, they can be used for the 

unconventional recurrence relation for the gradient orthogonal Q-polynomials. The 

unconventional recurrence relation for the gradient orthogonal Q-polynomials is given in [12] as 
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where the recurrence variables 
m

nf  and 
m

ng  are defined in [12] as 
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The 
m

nf and 
m

ng variables can be computed to any order n for a fixed m through iteration over n, 

starting at n=1. The unconventional recurrence relation shown in Eq. (2.43) is initialized with 

( )20
0

1 .
2

m
mQ u

f
=  After 

m

nf  and 
m

ng  are computed for a fixed m, and up until the desired order 

n, then the recurrence relation defined in Eq. (2.43) is iterated over n to find the gradient 

orthogonal Q-polynomial for the fixed azimuthal order m. The details of the recurrence relations 

can be found in the appendix A of [12].  
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In order to illustrate a description of a surface with the gradient orthogonal Q-polynomials, an 

example is given by Forbes [12]. An implementation of the gradient orthogonal Q-polynomials is 

carried out in what follows in order to validate and explain in detail a characterization of an 

optical surface in terms of gradient orthogonal Q-polynomials through the step by step 

implementation of the example presented in [12] by Forbes. An off-axis section of a simple 

parabolic surface is fitted with gradient orthogonal Q-polynomials. The paraxial radius of 

curvature of the parabola is 1 20c=  mm, and the center of the off- axis section of interest is 

offset 20 mm away from the optical axis (z-axis). The radius of curvature of the best-fit sphere is 

1
c

bfs
= 37.405mm [12]. The best-fit sphere is the one that touches the surface at its axial point. 

The best-fit sphere curvature is calculated by taking the mean value of the sag around the 

perimeter, 
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where the angle brackets denote the average of the sag around the perimeter over ɗ. The off-axis 

section of interest has a diameter of 20 mm. In Figure 9 (a) a two dimensional cross section of 

the parabola and its best-fit  sphere intersecting at the point of intersection (POI) along the local 

normal are shown. The sag departure from the best-fit sphere along the local normal is presented 

in Figure 9 (b).  
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Figure 9 (a) 2D Cross-section for fitting with gradient orthogonal Q-polynomials; (b) The sag 

departure from the best-fit sphere, adapted from [12]. 

 

In three dimensions, the positions of the best-fit sphere and parabola are shown in Figure 10 (a). 

The red grid shows the best-fit sphere that touches the parabola at the POI, and the green section 

shows the off-axis section of interest. The green line is the normal at the POI, (20, 0,-10) mm. In 

Figure 10 (b) the sag departure from the best-fit sphere for the off-axis section of interest is 

shown. Note the similarity between Figure 10 (b) and Figure 9 (b), which is just the central line 

of the former. 
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Figure 10 (a) 3D view of the off axis section on the parabola and the best-fit sphere intersecting 

and POI, (b) the sag departure of the parabola off its best-fit sphere over the off-axis section, 

adapted from [12]. 

 After performing a least square fit of the sag shown in Figure 10 (b), we arrive at the 

coefficients for the fit. The tolerance for the fit is 1 nm. The truncation of the series expansion 

shown in Eq. (2.32) is T=8, which is m+2n=8. The slope orthogonal and gradient orthogonal 

Q-polynomials are entirely computed with the recurrence relations in order to achieve robustness 

and stability. For each azimuthal order m, the coefficients of the fitting Q-polynomials are given 

in Table 1. In Table 1, we can see that the coefficients decrease in magnitude as their order n 

decreases, and the smallest coefficient is 1 nm, which is the tolerance we have for the error 

profile.  
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Table 1 The coefficients for the gradient orthogonal Q-polynomials for fitting the sag shown in 

Figure 10 (b) [12]. 

( )

m

nb

nm

 

m 

n
 

 0 1 2 3 4 5 6 7 8 

0 11509 199278 592756 -72134 6311 -274 -27 8 -1 

1 -218 -187945 16062 115 -145 17 -1   

2 6 1353 -243 5 2     

3  -35 5       

 

The residual error profile for this least square fit with the gradient orthogonal Q-polynomials is 

shown in Figure 11. It is clear from Figure 11 that the Peak to Valley (PV) error never reaches 

the tolerance level of 1nm that is set for the fit.  

 

Figure 11 Profile of the residual error for the fit with the gradient orthogonal Q-polynomials of 

the sag shown in Figure 10(b), adapted from [12]. 

 
































































































































































