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ABSTRACT

Slow-servo singlepoint diamond turning as well as advances in computer controlled
small lap polishing enable the fabrication of freeform optics, specificafiical surfaces for
imaging applications that are not rotationally symme#eeform opticaklementswill have a
profound importance in the future of optical technolo@ythogonal polynomials added onto
conic sections have been extensively usedescribeoptical surface shapeshe gtical testing
industry has chosen to represdrg departure of a wavefront under test from a reference sphere
in terms of orthogonali-polynomials specifically Zrnike polynomials Various forms of
polynomials for @scribing freeform optical surfacesy be consideretiowever bothin optical
design andn supportof fabrication. More recently, radial basis functiomsrealsoinvestigated
for optical shape description. In the application of orthog@rablynomialsto optical freeform
shape description, there are important limitations, such as the number of terms required as well
asedgeringing and ill-conditioning inrepresenng the surface with the accuracy demanded by
most stringent optics applicationshe first part of this dissertation focuses upon describing
freeform optical surfaces witfi-polynomialsand shows the limitations whenincluding higher
orderstogether withpossible remedie®Ve show that @ossible remedy is to use edgeastered
fitting grids. Provided diffeent grid types, we furthermoreompared the efficacy of using
different types ofi-polynomials namely Zernike andradient orthogonaD-polynomials.In the
second part ofhis thesis, a local, efficient and accurate hybrid methatkv&@opedin order to
greatly reduce therder of polynomial terms required to achieve higher level of accuracy in
freeformshapedescriptionthat were shown to require thousands of temkiding many highr
order termsunder prior art This comes at the erpse of multiple sulpertures, and as such



computationamethodsmay leverage parallel processinghis new method combines the assets

of both radial basis functions and orthogonakpblynomials for freeform shape description and

is uniquely applicable across any aperture shape due to its locality and stitching principles.
Finally in this thesis, in mer to comprehend the possible advantages of pacalteputingfor

optical surface descriptisnthe benefits of making an effective use of impressive computational
power offered by multicore platforms for the computation Gfpolynomials are investigadl.

T h e -pol§inomials, specifically Zernike and gradient orthogonatpdynomials, are
implemented with a set of recurrence based parallel algorithms on Graphics Processing Units
(GPUSs). The results show that more than an order of magnitude speedupilide pasthe

c omp ut a tpolymomiale bver @ sequential implementation if the recurrence based parallel

algorithms are adopted.
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CHAPTER ONE: INTRODUCTION

Freeform opticatomponentsre going to play key roles in the future gitical systems
The ability of these componentsy definition to depart from rotational symmetry, for the first
time, enables truly folded geometries with excellewerall optical correction These properties
enable optical systems withducedohysical sizethrough a reduction in element countth the
added property of beinigghter weight In addition to the gain in compactness and reduction in
weight, optical designs leveraging freeforrmomponents may also yielgperformance
improvementsn terms of a gain igtendue whereétenduamay be thought of as the product of
the field of view and aperture size of the systgma given focal lengthin layman terrs, as the
étendueincreases the fi€iency of the system may increase together with the resolution or the
ability to image a larger field of view or bot@ne of the early types of optical systeto take
advantage of the new fabrication capabilities that enable freeform suidasesbstucted alt
mirror systemsthat are beingdesigred enabling ultrabroadband imagingSome pioneering
examples of freeform optical elements have started to emerge in Head Worn Displays (HWDs)
[1], projection system§f?], and infrared imagerg3]. As Rollandand Thompson discuss a
recent Optics and Photonics News arfithere is arevolution occurring in the field of optical
designthatis mainly driven by two concurrent but unrelated major developmeqtsringthe
optical design community to develop wemethods and tools to describe freeform optical

surfaceg4].

A first developmentprior to even considering freeforaptical componentbut providing

someguidanceo theirdevelopmentresulted from discovering thatpower series representation



introduced by Abbe 5§ for aspheric opticsis failing in part because ofhe lack of
orthonormalization. When new polishing methods, small tool polishing, ion beam paliahthg
magneterheological finishing MRF) polishing have come to be adopted throumit the
industry, ths issuehas become appardmtcauseotationallysymmetricaspheresvere started to

be favored inchallengedoptical designgo insure least number of elements while meeting high
performancespecification such as fahe compact cell ponehigh resolutionrcamerasand at the
other end of the spectrutithography lensesNew methods to describe optical aspheavese
proposedy Forbesn place of historical power serighe Q" andQ®" polynomials[6], in order

to address this issuRecent work shows that dgsing with Q-polynomialstogether withslope
constraintsthat may easily be constrained in the optimization merit function given the unique
description of these polynomials, yield optics that is less sensitive to alignment amblgss
huge gain for higher yield in optical manufacturitigt will lower cost while maintaining or

improving quality[7, §.

The second development is the introductiothefslow-servoaxisin the diamond turning
based manufacturing of opticalelements[9]. This development enables the controlled
manufacture of optical freeform surfaces, which aremtansically rotationally symmetricThe
initial impact of this development is to broaden the definition of optical surfaces from a conic
surfaceplus the power series tiasis functions that may describe freeform surfaCakmakciet
al. proposed and ingmented local shape descriptons the form of Gaussian badisnctions
that appearwell suited for local shapelescription[10, 11]. Recently gradient orthogonal
Q-polynomiak as an addition to a best fit sphehave beeiproposed to describe optical freeform

surfacesin the context of optical manufacturirj@2]. Togetherwith the recurrence relations

2



theymay alsgprovide an efficienand robgt optical surface description capabilithat may also

be leveraged in design

One approach to specifying a freeform surface is to use a base conic surface plus Zernike
polynomials to describe the nootationally symmetric componenfl3]. Zernike polynomials
areused as pervasive means of representing optical surface deformatiantical testingas
they are complete and orthogonal over tiné circle. Moreover, the lower order Zernike terms
are readily identified with Sedl and H.H.Hopkins aberrationg 14, 15, 16] that are used in
optical design However, mportant limitations in the optical surface descriptions with full
aperture Zernike polynomials exist: It may be the case that higher order Zernikeaterms
required in order taepresent optical surfaces with the accuracies required by most stringent
optics applicationsHigh order terms possess numerical probl@misnplementation because of
roundoff errors. Recurrence relations are adopted as a remedy for this casargs dher
orthogonal polynomialsl[/]. Even when the problems with the numerical rooffderrors are
bypassed, it is anticipated thidte thousands of terms required to describe a freeform surface
with subnanometer accuracy is a bottleneck for the opticagmers. A second limitation is
severe edge ringing associated witkpolynomial surfaces. Edge clustered fitting grids are
proposed to overcome the edteging successfully witlii-polynomial surface$l8]. Although
for optical design purposes it is suitalib apply effective edge clustered ray grids, for testing

purposes, a clustered edge grid may not be easy to implement.

As opposed to fulapertureli-polynomialsas optical freeform surface description, lgcal

multi-centrig additive Radial Basis Functions (RBFa)ererecentlyinvestigated for desdring



optical freeform surfaceglO, 11, 19]. While orthogonalli-polynomialsare defined oveonly
specific geometries, such agircle, RBFs are more general, conforming to any apertuapesh
Although the orthonormalization ofi-polynomials over other specific aperture shapes are
possible 0], RBFs constitute one basis set that appliesaty aperture shape. Forsaking the
orthogonality of(i-polynomials, RBFs offer simplicity and geometfiexibility in terms of
aperture shapes. However RBFsvéndheir own drawbacksas well They may suffer from
numerical illconditioning when their shape is flat or excessive numbers of them are used to

describe freeform surfaces.

Motivation

As the opticsmanufacturing industry is forging ahead in the advancement of their
fabrication methods, the mathematical models to describe optical suréaeasquired to be
retooled and redefined. The major motivatfon this workis how to beskefficiently describe
general optical surface shapes with different aperj@@metriesand uncommon features. In
other wordswith the optics manufacturing industry presenting itself with the ability to fabricate
most general freeform optical elemeni® pose the question dfow to best economically and
accurately represent general optical shapges.an impact of these developmentstical
designers neetb answerthe following questions: Doethe sampling of the surfackave any
effect on the accuracy of the descriptiontlo¢ optical surface? Is there a way to describe a
freeform surface witminimum number of basis elements, few a5 terms of(i-polynomials,
while at the same time achieving subnanometer accuidecyhey need to change the basis for

the description of feeform elements if they work on an apertsihapedifferent thana circle?ls



it possible to use highly threaded masgre computational platforms to reduce the
d-polynomials computation time through parakeimputing In this thesis, wenvestigae the
possible answers for the above questions while proposing new methdtie ftescription of
optical freeform surface$Ve alsoreporton the merits and limitations of working with different
bass for freeform optical surfaces under different sampling pwtia addition todevising and

implementing parallel algorithms fdirpolynomials computation.

Research Summary

In the first part of this thesis, we show that the ray grids commonly used in sampling a
freeform surface, such asuniform hexagonal samplingrid, to form a database from which to
perform ad-polynomial fit is limiting the efficacy of computation. We present an edge clustered
fitting grid that effectively suppresses edge ringing that arises aspl&/nomiak adaptto the
fully nonsymmetricfeatures of the optical surfa¢@8]. Secondly we show that substantial
number of Zernike((-polynomial) terms, sometimes thousands,eiguired in order to achieve
subnanometer accuracy. Prior to arriving to the appropriate number of terms, intermediate results
with insufficient number of terms exhibit high departure errors at the edge. The impact of this
edgeclustered fitting grid onhe reduction of edgenging and the improvement of surface
representation by several orders of magnitude is also compared with uniform hexagonal subgrids

centered on rectangular uniform grid, Chebyshased radial grids, and polar grids.

As part ofaninvestigation of fitting grids for optical surface descriptiéull aperture
d-polynomials, specifically Zernike and recently introduced gradighbgonal Qoolynomials,

arealsoinvestigated in a comparative manner in terms of efficacy of opticalceudscription



[21]. Results establish thsimilarity of (-polynomials for accurately describing freeform
surfaces under stringent conditiging. a high departure surface with high local slopeghich is
a critical step in the future application of tee®ols in advanced optical system design and

fabrication.

In the second part dhis thesiswe developedan efficient, accurateandlocalized hybrid
method combining assets of bd&BFsandi-polynomials for freeform shape description, which
makes it miquely applcable across any aperture shape due to its domain decomposition and
local stitching propertie$19]. Results show that the proposed method yields subnanometer
accuracy with as few as 25 teriirgpolynomialsin each subapertur&ubnanometer accuracy is
required for the stringent conditions of lithography and related precision optics applications.
Under kss stringent conditions, such as for illumination opiics shaovn that the necessary

accuracy is achieved usiagfew as16 termsof local (i-polynomialsin each local partition

Finally in this dissertation, we have devised and implemented recurrence based parallel
algorithms for (-polynomials in order to take advantage of parallelism on highly threaded
computational platrms i.e. Graphical Processing Units (GPUs). The results show that more
than an order of magnitude improvement is achieved in computational time over a sequential
implementation if recurrendeased parallel algorithms are adsgptin the computation of the

G-polynomials [50].

Dissertation Qutline

In the next chapter, we present a review of stdédte-art methods for the description of

optical surfacesThe chaptestarts with a description of the orthogord&) G-polynomials for

6



aspheric optical element¥he recurrence relations for the slope orthogonglo@nomialsas
descriptors of rotationally symmetric asphegge reviewed in this first section. Chapter 2
continues with the presentation of freefor(hne. 2D and nosotationally symmetric)
d-polynomals First, the set of Zernike polynomials as a descriptor for freeform elements is
explained followed by the recently introduced gradiewotthogonal @polynomials. The
recurrence relations for efficient and accurate computation of these polynomiaigears ghe
same section. In the next secti®@BFsare introduced along with their numerical properties and

QR-based algorithms for this optical surface description.

Chapter 3 focuses upon efficient ray grids for the description of freeform optical
elemants. The first sectiondescribes thdeast squares fitting processirrently used in the
preliminary optical design work witbpticalfreeformsurfaces and how low ordeti-polynomials
matches the Sedllwavefront aberrations. In the following section, four different ray grids are
described: uniform hexagonal subgrids centered on a uniform rectangular grid, a polar grid with
Chebyshebased radial weighing, a uniform random point grid, and an-eldgered random
point grid. In the last section, numerical experiments with different test cases as the examples of

highly varying freeform optical surfaces are given.

In Chapter 4, we have comparedo different(-polynomials in terms of least squares in
orde to understand the freeform description capabilities of these two polynomial sets under two
different sampling ray grids, uniform hexagonal subgrids centered on the uniform rectangular
grid and an edgelustered fitting grid. In the first section two d@ifent raygrids and test cases

are presented. In the numerical experiments section, two different test cases are described with



increasing number of basis elements in order to reveal any similarities or differences between
these two methods in terms of $¢aquares fitting of freeform optical surfaces. Tagt section
is an inquiryof the effect of the height of the surface features on the numhepofynomials

terms required and the impact on tesidualpeakto-valley (PV)fitting errors.

In Chapter 5, a local, hybrid, efficient and accurate optical surface description
methodology is proposed and shown to have striking significance in the reductioroadehef
d-polynomials termsaised forfreeformsurface descriptianin the first section, the hyid RBF
and local(-polynomials method is presented along watldescription ofts algorithm. In the
next sectiora variationof the method with local Gaussian RBFs with local shape optimization
instead of locald-polynomialsis described. Finally in th@umerical experiments section a
complexfreeform surface is represented witte hybrid RBFs and locall-polynomialsmethod
Resultsshowthat the surface mdye described with as few as 25 teim®ach subapertufer
subnanometer accuracies. Also imstiection the tradeff between thdocal number ofbasis
elementsan the localli-polynomials fits and the size of the subapertures is shown vitief

comparison to its shamptimized local Gaussian RBF counterpart.

In Chapter §recurrences basgxhrallel algorithms, devised and implemented on a highly
threaded GPU for t he acpolgnoneialsaargresentedinfthe ire mput at
section, general purpose computational methods with GPUs are described along with the brief
review of GRJ architecturs. In the seond section, in addition to the pseucmdes, some
parallel algorithm®f G-polynomials constructed upon the recurrence relagomashown with a

detailed descriptionln the final section of this chapter, numerical experimémttuding the



effect of the ray grid size ani@polynomials order on theomputation timeare carried outas

well as the validation of the parallel algorithms and speedups through the parallelism.

Chapter7 summarizes the main findings and major contridmai of this research effort
along with possible future directions fdhe mathematical and computational methods for

freeform optcal surface description



CHAPTER TWO: POLYNOMIALS AND RADIAL BASIS FUNCTIONS AS
OPTICAL SURFACE SHAPE DESCRIPTORS

In this chapter, we review the stavé-the-art polynomials and radial basis functions
(RBFs) for freeform optical surface description. Historically, power series expansions with a
conic section of choice are used to describe optical surfadesh until recentlyhave been
dominantly rotationally symmetric, or portions of rotationally symmetric parts, with some
limited use of anamorphic aspherésilures in this mathematical description modemnerged
early in 2000 when commercial optical software unwittingly pfed optical designers with
more aspheric terms than could be support withiB2Zomputing. This occurrence th@osed
the question of how to best describe optical surfaces with high accuracy and minimal cost. The
mathematical propositions for this questiare reviewed in the next sections. We start with the
recently introduced slope orthogonalp@lynomials f] for rotationally symmetric optical
surfaces. We then review Zernike polynomials as the-kvellvn andcurrently emerging basis
for G-polynomialsfreeform optical surface descriptgmwhich are not rotationally symmetric. In
the final seabn of polynomialsapplied to the description of optical surfaces for optical design
gradient orthogonal @olynomials are described along with their recurrenetations. The last
section concludes this chapter with a review RBFs and their stable evaluation with a

QR-based approach.

Slopeorthogonal @polynomials forAspheres

The most widely used and conventional method for characterization of optical surface

shape, whether that shape is rotationally symmetric or not, is a power serigsi@xpa

10



introduced by Abbef] almost a century ago. This power series representation is made more
effective with abase conic section of choice as conic sections have some useful optical

properties. Hence an optical surface is mesiegally represented &slows

2
cr A a, ™ (2.1)

:1+\/1 (1 k)X P a

z(r)

In above Eq(2.1), } andzrepresents the standard cylindrical coordinaaespresents the conic
constant of choiceg stands for the curvature of the conic. This representation of an optical
surface is completedvith the aperture radiugmax FoOr aspheric surfaces, because of the
rotational symmetry, the sag(l) has only one independent variahle,For freeform surfaces

however, there is also an angular dependence of the sag function, which is represgnted as

Althoughthe expression in Eq2.1) yields a complete set for approximating the optical

surfaces for the required accuracies providedrthigtallowed to be large enough, the monomial
basis, i.e.r™, is numerically inefficient and provides the surface approximations through heavy

cancelation of the terms, which leads to associated least squares approximatite &@ndm

matrix to become heavily H#tonditioned. One improvement is to apply normalization of the

basis such as to adopt='/ and second is to remove the degeneracies between the basis

elements, whicls to orthogoralizethe basis.

Condtioning is relatedto the perturbation behavior of a mathematical problem and
stability is relatedto the perturbation behavior of an algorithf@2]. Generally a well

conditioned problem is the one whkeasmall perturbation irthe data causesnly neglgible

11



changes in the solution. An-itlonditioned problem is the one whemall changes ithe data
leadto an unacceptablehange in the solutiotn terms of numerical linear algebra, conditioning
of a problem is measured with a condition number. Tnefetdefines the condition number as

follows [22]:

ALet A beanonsingular matrixconsiderAx=b, the problem of computinig, givenx, has

condition numberk ¢ ||A||HA1H with respect to perturbations xaf The problem of computing,

givenb, has the condition numbek ¢ ||A||HA1H with respect to perturbations of The problem

of computingx, whenb is fixed, x = A" , has the condition numbes = ||A|[|A™

with respect to

perturbations i\, where|| r e pr esent s the norm of a matri x.

A is ill-conditioned when the condition numbé, is large,and similarly A is well-

conditioned when the condition number is small. It is always expected tdoigg& digits in

the solution of a least square system if the least square matrixcanditioned[22]. An
orthogonal basis, since all the basis elements are orthogonal to each ottheraemsdciated dot
product is zero, contains no degenerate or-degmerate basis elements, which leads to -well
conditioned approximation mates. The tradeoff between the ilconditioning of a matrix and

the accuracy of the solution of the least squares system is best captured through an Asample
such, n the followirg example, the orthogonal Chebyshev polynomials are compared with the

monomials (power series) in termstbéleast square approximation of a smooth surfadg

In this section, we present a summary of the example given in [23] to further clarify the

di fferences between the monomials and a@an orth

12



1um bump overa 60 mm apeture that is fittedwith 9 monomias and rthogonal Chebyshev

polynomials. The shape of the function is given in Figur@He function to be fitted is an

exponential of form g(r) = e’/ . The monomials used for the fire{1,° }* é;'%. The

Chebyshev polynomials are defined ®© b

T..(r) =cod marccos(]) (2.2)
wheremis even.
1
0.8
Eos
=
€04
0
0.2
-%o -20 -10 0 10 20 30

aperture size (mm)
Figurel Sample fitted withmonomialsand Chebyshev Polynomiaksdapted from [23]

When we carried out the least squares approximation, coefficients for the monomials are found

out to be{999.5, -11024.9, 590728, -196235.6 427031.4-608789.4 540151.6-269848.7,

57744.inm.

The condition number for thleast squares approximation matrisid711e+5Sq we expect to

lose 6 digits of accuracy because of thedhditioning associated with this monomial bases.
log(5.4711e5) is about 5.7¥Ve see thathere is heavy candation between the fitaefficients.

Even if the fit is required to be within a 1 nm tolerance twedest surface is 1 micran height,

the coefficients are thousands of microns. More importantly, since the approximation matrix has

13



a nonempty null space, there arafinitely many solutions to this problenfurthermore,
changing thecoefficients with a scaled version of the nullspace vectansstitutes more
solutions for this problerand does not effectively change the result. B@amgle ForbesZ3]

mentionedthat 539995could be replacedith 539995212992, and the fit is still within 1 nm

tolerance.

Instead, whemloing the least squares fit with orthogonal Chebyshev basis, the fit coefficients are
given as{173.6, -314.0, 2341, -1455, 76.9, -34.8, 140, -4.7, 1.8 nm [23]. The condition
number for this orthogonal Chebyshev least squares majtigtié. Thus all of the digits in this

list aresignificant i.e. log(4) is 0.6andthese coefficientsannotbe changedvithout changg

the result of the fit. Since the condition number is very small compatedttofthe monomials,

this matrix is weHlconditioned. This representationf the fit is also more efficient [23].
Furthermore, the coefficients do not change if we include owre basis element to the
approximation matrix in the next approximatidhwe truncate the number of basis elements at
some point, such as 7, then we would expect to have a fit error about the shape and si?® of the 8
basis element, since this spectrum of coefficients de@@aseagnitude. For examplae will
expect to loseabout 2 nm of accuracy if we truncate the last basis element from the
approximation list, since all the digits this list count. The null spac of this approximation
matrix is empty(a well-conditioned problem), which means there is a single solutothis
approximation problem. Ae fit coefficients donot change no matter how many basis elements
are used in the fitcor example, we carried pthe fit with 15 Chebyshev polynomials, and the

coefficient list is

14



{173.6, -3140, 2341, -1455, 76.8 -34.9, 140, -4.9 1.6, -0.5, 0.1,-0.03, 0.@6, -0.001,

0.0003}nm.

By examning the above list, we expect to have a subnanometer tolerance inittlneefthiad just

used 11 basis elements, since the fit coeffiaiétine 12" basis elemeris just-0.03 nm.

Thus although the monomial basis is practically useless afiew terms,for examples,
on the other handwe can use an orthogonal basis sush Chebyshev basis to arbitrary
accuraciesignificantly set bymachine precision. Another useful interpretation of fitting with an
orthogonal basis is that the sums of squares of these fit coefficients result in the mean square sag

at that point.

After observing that monomial basis totally fail due tectinditioning of the associated
Gram matrix, and considering the requirements of the optical interferometrygteStrbes
proposed two sets ofthogonal polynomials ing]. In the following we will summarize Forbes

article [6] for Q-polynomials namelyQ®" andQ"" polynomials.

Instead of usinghe monomials thatregiven in Eq.(2.1), we could have replaced the

monomialswith a sé of orthogonal polynomial€Q*°"6

sThen a surface sagao be represented
with a conic base plus the departure from the ¢anichas givenasEqg. (2.3), also in [6] In this
way, ill-conditioning of the Gram matriss removedsince the orthogonality W not allow itto

be ill-conditioned

cr? r

+Dcon - /) 2.3
1+1 -(1 k)? P (fmax) @9

2(r)=
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In Eq.(2.3), the first part of th equation represents the base conic,agdu) represents the sag
departure from the conic. All other variables are as the same 2 HgThe departur&éom the
conic is representdad [6] as

D, ()= U'4 a, Q& ( ). (2.4)

m=0

Q" polynomials are related to the Jacobi polynomials suchthkassociated Gram matrix is
diagonal. Under a unity weight function, the dot product between two basis elements forms the

contents of the Gram matrshown in [6]as follows
G, :<u8(2ﬁqon( UZ) Q:non( l.f)> :Zﬁq;non( )) qor( X & db (2.5)
0

where angle brackets denot® weighted average, and the dot product urtderunit weight

con

reduces the integral form given in H.5). Since thes& " polynomials are orthogonathe

associated Gram matrix is diagonal. The relationship between the orth@j8hpblynomials

and Jacobi polynomial®, is givenin [6] as follows
Q" (9 =FM2x ). (26)

A few initial polynomials are {, 6x5, 28%-42x+15 é }. In Figure 2, we show the first 7

polynomials from this list.
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con

Figure2 The firstsevenorthogonalQ"" polynomials adapted from [6]

con

Similar tothe generation of)°°" orthogonal polynomials, Forbes derived orthogap/t

polynomials. Two main significant differencesbetweenQ” and Q°" are the use of a besit

bfs

sphere as the baserfae for Q°* (as opposed to a coniior Q°°") and the orthogonalization in

bfs con

slopefor Q" as opposed to sdgr Q, motivated thereafter. Firstspheric surfaces are most
cost effective when their deviation from a best fit sphere is restramedeet the needsf
metrology and fabricatignthus the choice of a sphere for the base surfadtereover
significantly, limiting the absolute maximum slope of the departuredéacenhancements in
manufacturability of aspheress it extends the slopenge over which metrology can be
successfully performed and reduces the sensitivity to alignfbos a representation such as
Q" where thesquare root of thsum of the coefficients squared represehe Root Mean

Square(RMS) slope error is most coewmient as this sum may be computed on the fly during

17



optimizationof a surfacen lens designAs suchthe maximum slope caalsobe simultaneously

constrained as the RMS and max slope errors are intimately related.

Most fabrication shops use fdradefinition of thebestfit spherethe one that touches the
surface at its axial point and around its perimeiée besfit spherecurvatureis effectively

calculatedn [6] as

21 (7 )
Cots = (ffqax"' | /;T1ax)2)’ 2.7

wheref(} may IS the sag at the perimeter, anghy is the aperture radiughe sag carnhenbe

written [6] as

g ar ¢
o D ¢ (28)

Z(r)= (1+ 1 _besrz) ‘ée/-max _:

where the departure from the best fit sphedeined in [6]as

u’(1- u?)

Il Sl fs uZ )
o a> &) =

In Eq. (2.9), u is the normalized radial coordinatsote thaty having the termi®(1-u?) appear

D(u) =

in the numeratorthe departure from the best fit sphereassrequiredzero at the edge and its
axial point,the denominatois the cosine of the angle between the normal of thefibegihere

and theoptical axis In order toconstruct theRMS slope of the departure alotige normalfrom

18



the sum of squares of the coefficierds, the slope functionsSy(u) mustbe orthogonalThe

dlope functions are definad [6] to be

s.(u d{u’F(1 ) @ ﬁ)} (2.10)

" dx

A dot product witha weighed function is defined such that the orthogonal polynomials do not

grow unboundedly towards the ends of the interval,

S, (U S0 W b udu
0 , (2.12)

|17w(u)udu

whereS, andS;, are orthogonal slope functions aw¢)is the weight function(u?(1-u?)°-°[6].
With this dot product, the first function can be taken to be a constant and normaheadhe

new members of the orthogon@!™ polynomials can be made orthogonal tota# previously

bfs

computedQ~"~ polynomials. An appropriate procedure for tlughogonalizationis to use a

modified GraraSchmidt algorithmThe first few of the polynomialare

&

P 2 a29. i
%1,\/1_9(13 16) \/;629 4( 25 -19 g..

(2.12)

Sy

In Figure 3, we have showsevenof the slope orthogona)®™

polynomials. The advantage of
using this set of orthogonal polynomials as compared to that of monomialesmébed with
examples if6, 23, 24]. As an application example, Ma al.recently showed that the design of

a 28 element lithographic lenachan optimization integrateBMS slope constraint resulted in

19



an order of magnitude decrease in overall sensitivity to tilts and decauritier®-polynomials
[7]. Ma et al.also reported similar findings in the investigatimina highresolution cell phoa

camera §].

0.5

0% 0.2 0.4 0.6 0.8 1

bfs

Figure3 The firstseverslope orthogondD"" polynomials adapted from [6]

In order to efficiently calculate the -@olynomials, Forbesisal recurrence relations.
Often used witlorthogonal polynomials, recurrence relations provide simplicity and stdfoitity
the numerical calculatiortbatwould otherwisebe affected byiumerical cancétion and round
off errors leadingto an illconditioned systenof equations For a Q°", a gandard 3-term

recurrence relatigrdefined in [L7], is given as

Qe (W) = (Vi Hv, ) QW) 1, Q( ). (2.13)
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In Eq.(2.13), u is the normalized radial coordinate = %max, 'Vim 'Vom andrvsn, are recurrence
variables defined below in Bq(2.14)-(2.16), and m starts at 1 The recurrence relation is

initialized with the first two polynomials, whichre Q§°”(u2) and Qf°”(u2), 1 and6u’- 5

con

respectively. After initialization, an®™" polynomial of orderm can be computed with the

recurrence relatiowhose variables are defined it7] as

I (2m+5)(rr? Sm El-(') (2_14)
m (m+1)(m 2)(m 9’

_2(m+3)(2m +5 (2.15)

Ven = (me1)(m )

__(m+3)(m #4)m (2.16)
M (m+1)(m ) (m 9

rv.

For theQ"™ polynomials however, there is no standarde8m recurrence relation. Instetitey

satisfy an unconventionaH®8rm recurrence relation with a set of auxiliary polynomigjgu?),

bfs

[24]. The unconventional-Berm recurrence relatidior Q" polynomialsis definedin [24] as

Qﬁ(uz)zgm(u)- gmdi( ) -t Ol ) ¢ 217

m+1

The auxiliary polynomialsPy(u%), are a special form of Jacobi polynomiatkich satisfy a

conventional 3erm recurrence relation givém[24] as

P

m+l

(v)=(2 -ar) R () R.(4). (2.18)
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The recurrence relation in E(.18) is initialized with first two auxiliary polynomialsPo(u?)
andP,(U%), which are 2 an6-8\7, respectively. After iniilization, anyP(u%) of orderm can be

computed.

The unconventional -8rm recurrence relation given in E@.17), contains recurrence
variablesgnm, hmi1, andfy+1. These variables can be found for each iteration of the recurrence
relation progressively starting with=2, f,=2, f,=19°%2, andgo=-0.5 and using the recursions

givenin [24] as

m(m- 1)
h = —~— 7 .
1+ h
O 1 ( gfm-z ‘“'2), (2.20)
m-1

fm=\f(m(m 1) 3 &, ﬁnz) (2.21)

Oncethe variables and auxiliary polynomials defined abaxe computedthey canbe iterated

through the unconventionatt8rm recurrence relation defined in E8.17) by first initializing

the recurrence witkthe first two polynomialngfS(uz) and lefs(uz), which arel and19%°(13

1617), respectively. All of theQ"™ and Q°°" polynomials illustrated in Figure 2 and Figure 3 are

computed with the recurrence relati@mwnin this section.
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Zernike Polynomials

Zernike polynomials are orthogonal polynomials over that circle. Since their
introduction by F. Zernike while delping the theory of phassontrastmicroscopyin the
1930s 3], Zernike polynomials have emerged as a pervasive means of describéatnyiested
optical surface deformationMore recently Zernike polynomials have further emergtx
illustrate the field dependence of thelynomial coefficientsn rotationally symmetricoptical
systems25]. In optical design and manufacturing, Zernike polynomial representations of surface
departure, placed as an added layer on top of a conaceufbrm an enabling fundamental basis
as they are complete and orthogonal over the unit circle and, in addition, theololeeterms
are readily identified with the Seidel aberratiokmreover, H.H. Hopkins wavefront aberration
function may also be deribed in terms of Zernike polynomial$y. The forms of the lower
order Zernike polynomials and the associated optical wavefront aberrations are shown in detail
in [26]. The Zernike polynomials provide a mapping between an optical surface under
consideation and wavefront aberrations, central to optical system design. Overall, Zernike
polynomials areone of the major tools in opticalpplications ranging from modeling optical

surfaces to representing wavefront test data afidinig residual error proféds.

The Zernike polynomials are defined in standard form in Born and \&/dgl&k follows

Z0(r, §=R( )oY 4

. i (2.22)
i sinmg y
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wheren>=m andmn is even. Instead of the radial variahle,a normalized variablei="/

may be adopted. This representation shows that Zernike polynomials are composed of Fourier

series in angular directiohe radialpolynomial inexplicit form is givenin [27] as

cm( o\ E( a\ (n- o) 24
R, (f)-go( 1) M prEm Ft 2.23)
q'g 2 ) 9 R 9

The radial polynomial shown above in E8.23) comprises even powers of the radial variable
scaled with factoal coefficients. Radial polynomial is of powerwhich contains no powers of
} less thamm. Forbes in 17] presented anotharseful representation of the radial polynomial,

which is firstgivenin [2§]
RY(r)= Fzg( %), (2.24)

where Z ¢ is an orhogonal polynomial, which isf powernf =(n-m)/2 The Zernike polynomials

are strongly related to orthogonal Jacobi polynomials to the extent that the radial polynomial is
sometimes referred as eaigled Jacobi polynomiaRuthors in L7, 28] depicted this relationship

as
zn(r?)=Rm(2 7 ), (2.25)

where PP™ is the Jacobi polynomial. This form of the radial polynomial is more concise

compared to the explicit form given in Hg.23).
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In Boyd and Yu 29|, where sgen spectral methods were compared for approximations
of surfaces, each methodds virtues and dr awhba
the best spectral methods due to its spectral convergence and fewer number of basis elements for
the sameaccuracy as compared to that of the Chebystwwier basisAlthough the Zernike
polynomials arene of the best tools feepresenting wavefront data and optical surfaces, which
may both be rotational symmetricor not, high-order terms become necessaryorf ther
representationA representation based upon the explicit form of the Zernike polynomials given
above in Eq2.23), especially for the highesrder tems suffers from the roundff errors
produced by numerical cancelation. This most often leads-¢onlllitioned system of equations
for the least squares procedures for surface approximations. Auth@7]lo$ymmarizes this

s i t u a tithas not beexgenirally appreciated that, in practice, this is a road to gbief.

Thanks to the relationshigvith the Jacobi polynomials given in E225), Zernike
polynomials satisfy a conventionait@&m recurrence relatiom.he standard -Berm recurrence

relation for Zernike polynomialis givenin [17] as

Z:f]+l(u2) = ( ernf +rv2nfuz) Z:f]( UZ) 'r\énf Zr?;l( lj)’ (226)

where theau represents the normalized radial coordinate as beforeyapava,;, andrvs,sare the
recurrence variable$or each recurrence relatitteration the recurrence variableged to be
computed They aredefinedin [17] as
A 2
(s+1)gs -nf)” #f s

_ C
Mo = (nf+1)(s -nf Hs (220
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w = (s+2)(s 4)
' (nf+1)(s -nf B’

(2.29)

N = (s+2)(s -nf) nf
M (nf+1)(s -nf B s

(2.29)

with s=m+2nf For each azimuthal orden, this recurrence relatiors initialized with Zg”(uz)

and Zlm(uz), whichare1 and[(m+2)u®-(m+1)], respectively. The recurrence relation them

be iterated for any ordef Zernike polynomials. Forbes states that the recurrence relations not
only remove the roundff errors inthe computation athe polynomials inexplicit form, thus the
ill-conditioning of the least sques and Gram matrix, but also they provicemputationh

advantages by reducing the computational cost fr@Mf) process ta O(M) procesg17]. In

Figure 4, a highorder Zernike termZS5(u2) is shown with itsassociated roundff errors if the

explicit formis followed and the remedy for rouraff errors, the recurrence relation.

80 1 |

40 ’
0 il |

40

5 0.25 05 0.75 1 0.25 0.5 0.75 1

(a) (b)

Figure4 (a) The round off errors present in thernike ponnomiaIZ§5(u2) in explicit
computation{b) The recurrence relation removes the numerical artjifadegpted from17].
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By looking at Figure 4 above, we can clearly see that large numerical cancelations lead to the
round off errors making the polynomial towards the edgstable off almost twoorders of
magnitude,and of chaotic sign.In Figure4, we also observe thatthe recurrence relation

computes the polynomial with the exact magnitude and correct oscillations.

To make matters more explicit, we present another exampieailimensional fom
shown in Figure 5. In Figure 5(a) a highder Zernike with its roundff errors produced by
numerical cancellations is shown and the accuracy in the computation is evidently off by a full
order of magnitude. Fine scale details are not observed ikgieieform of the polynomial is
used in the computation. However when the recurrence relation defined(2&)is used, the
polynomial peaks at one #tie edge of the normalized aperture and clearldiaedetails are

present in the computation of the polynomial.

(a)

Figure5 (a) Numerical ikconditioning associated wi&fz(uz); and recurrence relation

correctly computes?_;‘z(uz) (b).
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The ill-conditioning associated with the explicit form of Zernike polynomials are also
investigated by Boyd and Y29]. They have compared the dot product of the radialrmotyid

with itself for boththe explicit power series representation argdterm recurrence relationVe
have showrFigure 3 of their paper2p] for illustration of the illconditioning of the Zernike

polynomials in explicit formn Figure 6

Zernike Orthogonality, m=4
10 .

----- recurrence
—power series

absolute error
. ¥
(a»)

T ——
all T R R

10 18 26 34 42 50 58
Zermike Polynomials index, n

Figure6 The effect of recurrenaelations on the accuracy of ttet product of Zernike
polynomials for increasing ordem, adapted fronBoyd and Yu £9.

In Figure 6, authorpresentedhe errors in evaluating the dot product of a radial mament of

the Zernike polynomial with itself for the increasing powers,oivhile keeping the azimuthal
variable,m=4 for both explicit and recursive evaluations. The accuracy of the dot product is lost
as the degree of the polynomial is increased with the explicit power series computation, which is

highly ill-conditioned and unstable for large On the other handhe recurrence relation
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provides astable computationand preservess accuracy even for the larger degrees of the
polynomials. Concisely, the orthogonality of Zernike polynomials is maintained with the

recurrence relatioaven for the higher degrebscausef the stability of the recursion.

Similar to the slope orthogonal polynomials, an optical surtd@gacterizatiorbased

upon Zernike polynomials with the help of a bissphereis represented as

z(r, c)'=( Cors” % u" %gqmcos( m)g H" si{ m) LHZ”( EJ) (2.30)

1+1 -cbfsrz) m0 n®

wherez( ,) tepresents the sag of the surface, as the surface is not necessarily symjgnetric,

represents the curvature of the best fit spherFeth(LF) represents the standard Born and Wolf

Zernike polynomials of order[27], andu is the normalized radial coordinate.

Gradient Orthogonal @olynomials

Recently a new set obrthogonal polynomials over a circular aperture has been
developed by Forbes, orthogonalized with respect to the mean square gradient over an enclosing
circular aperture with the goal of facilitating measures of manufacturability, e.g. optical testing,
pad polishing [L2]. These polynomials will be referred to in this text as graebetitogonal
Q-polynomials following from the €polynomial form developed earlier for rotationally
symmetric aspheric surfaces. Since the common method to express an optcal isuid define
the departure of the surface from its best fitting comith an orthogonal set of polynomials,
Forbes decided to conform to this methodology in the definition of gradient orthogonal

Q-polynomials in order to facilitate estimates for mawtdirability of these surfaceand to
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integrate with optical design environmentdrthogonal polynomials ka the advantage of
expressing an optical surface as a spectrum of coefficients in decreasing order, which helps
interpretng the frequency content of an optical surfakceterms of optical manufacturing and
testing of an optical surface, the shapes closarsfhereareeasier to producé.hus the rate of
change of departure of a surfaglng the local normairom its best ikting sphere mast be
specified and considerdzecause the local prin@pcurvatures are related to the derivatives of

the departure

bfs

Similar to slope orthogon&™ polynomials, awo-dimensionafreeform optical surface

with gradient orthogonal Qolynomialsis representeh [12] as follows

_ G’ ar ¢ 237
Z(f, f)'— +D ’ q ( . )
(1+1¢1 -besfz) Eermax =
wherethe departure from the best fit spherspecifiedin [12] as
é 2 2 N fs
TU(1- v¥)q @ (v
1 ( )nzo () (2.32)

Dl ol ol e

D(ug)=7——=1 u
VL G 148 u grcos(m) +¢ s my gr( @)

1
I m=1 ni

In Eq. (2.32), u represents the normalized radial coordinate as befgpggis the radius of the

enclosing circular apertur@:fs(uz) represents the slope orthogonal ponnomieQﬁ“,(uz)

represents the gradient orthogonap@ynomials,cyis represents the curvature of the bigst
sphereThe entity within braces corresponds to the departure of the optical surfacesfitoest

fit sphere along the local normals of that sphere. The first line on top i{2.88) accounts for
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the rotationally symmetri@"™

polynomials cotributions to the departure along the normal,
whereas the nonsymmetric contributions are defined with the gradient orthogpobim@mials

in the second line of the EqR.32). The departure along the local normals of the best fitting
sphere is converted to a sag deviation along the pahaxs of interesby dividing it with the
cosine of the angle between the primtigxis and the local normal of the béi$ sphere,which

is the square root in the denominator in €2). For a surface descriptiorhd truncation of the

sums of the polynomials in E@2.32) is carried out by selecting a truncation poifit,which

constrains the highest degree of the polynomrat@m.

In order to construct the gradientlargjonal @Qpolynomials, Forbes made use of the fact
that the mean square gradient of the normal departure from thefibephere is given by the

sum of the squares of the coefficients of the surface description (8.82).[12],

2 2
2\ _[4uD 0 1 R 0. ¢ 2 2 2
(o) {40 8 & B) gy (a) (e {3
where angle brackets define the mean of the entity over the apdtteraverage of a function

over the aperture is usually found by taking a deutikegral of the function with an appropriate

weight. Forbesised the following functiom [12] for defining the weights,

w(u) = (2.39)

uvl- U

Then the average over the aperture of a functing) is givenin [12] by
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(0(ug)==f qfu ¥(1-d)" d qu (2.35)

Since the trigonometric modes for different azimuthal orderand m 6are orthogonal by
definition, the radial pastof the polynomials need to be orthogonalized with G&shmidt
orthogonalizationwith the castraint given in Eq(2.33). Some of the orthogonal polynomials
are given in 12]. We present hera couple of the first gradient orthogonatg@lynomials fo

each azimuthal orden=1, 2, 3 andn=0, 1as below:

4

Q;(uz):{l,ﬁ(l 7).}

2o, 1 (9-8s) (2.36)
Qn (u)_{\/f’ \/3_8 }

4 48(10- 9r)
3J/6  9/1110 -}

Qx(w*) ={

In Figure 7, we have illustrated the cosine version of the gradient orthoggayg®mialsfor
differentm andn values. We have plotted/o polynomials from the sequence for each azimuthal
orderm. It is important to note that these polynomials are gaed with the constraint that their
gradients fields are orthogonal to each other. Their gradient fields are shown in Figie 8.
gradient is a vector. So the gradient for different points in the aperture forms a vector field that is
shown in Figure 8For each azimuthal order these gradients are orthogonal to each other and for
Figure 8, it can be verified that the dot products of the gradients shown in eactnernavo.

Also when we examine thgradient orthogonaQ-polynomials shown in Figure 7 anbeir
respective gradients in Figure 8, we can observe that when there are steep slopes in the

Q-polynomial,the gradient field has a peak, and when there are flat regions, gradients are zero.
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Figure7 Cosine version of the gradieorthogonal @olynomials (ayn=1 n=1(b) m=1 n=3
(c) m=5 n=0(d) m=5 n=2, adapted from [12]
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(d)
Figure8 Gradient fields of the gradient orthogonap@lynomials for the givem, n pairs
adapted from [12]
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In the generation ofigures 7 and 8, we have made use of the recurrence relations defined for

bfs

gradient orthogonal {olynomials in L2]. Similarly to the slope orthogon&~" polynomials,

gradient orthogonal Qolynomials satisfy an unconventionate8m recurrence relationith the

help of a sebf auxiliary orthogonal polynomials.

For each azimuthal orden, the auxiliary polynomialam(uz) satis a standard -8erm

recurrence relatiogivenin [12] as
L () =gA" BN @d) GF] (2.37)

where the recurrence variabke®definedin [12] as

Ar = (20 D(m +2n %M;:m m3-(m3(2m ) (2.39)
gr= 2(2n- J(m +2n Qémm 2n 3(m 2n+}) (239
cm = N(2n- (m +2I;1:13)(2m 2n 3- (2.40)
Dr=(4n> -)(m m 2(m 2 3. (2.41)

The recurrence relation shown in E8.37) is initialized with P"(u*) =1/2 andn=1, and the
first polynomial in the setP™(U”). Special handling is required for whem=1, and R"(\¢)is

defined to account for the special cgseen in [12]as follows
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m =

u2
2 (2.42)
1
2

{m HF m 13

V= 9 o)

By iterating throughn, any ordern of the auxiliary polynomials can be generated for each
azimuthal ordem. Once auxiliary polynomials are computed then, they can be useati€or
unconventional recurrence relation for the gradient orthogonapolghomials. The
unconventional recurrence relation for the gradient orthogowadighomials is givenn [12] as

Q(w)= & (f): ﬁl%(d) f (243

where the recurrence variablé$' and g;" are definedn [12] as

gr, = Gnm-% . (2.44)
n-1
fnm = \/ an _grrrﬂlgnm—l' (245)

The f"and g, variables can be computed to any omdéor a fixedm through iteratia overn,
starting atn=1. The unconventional recurrence relation shown in(E43) is initialized with

ch)'n(uz) :/f . After f" and g;' are computed for a fixeoh, and up until the desired order

n, then the recurrence relation defined in Eg43) is iterated ovem to find the gradient

orthogonal @oolynomial for the fixed azimuthal order. The details of the recurrence relagon

can be found in the appendix A df.
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In order to illustrate a description of a surface with the gradiehogonal @Gpolynomials, an
example is given by Forbe$d. An implementation of the gradient orthogonap@lynomials is
carried out in what follows in order to validate and explain in detail a characterization of an
optical surface in terms of gradte orthogonal @olynomials through the step by step
implementation of the example presented in [12] by ForBesoff-axis section of a simple
parabolic surfaceis fitted with gradient orthogonalQ-polynomials. Theparaxial radius of

curvature of the parabola ig =20 mm, andthe center of theoff- axis section of interest is

offset20 mm away from theptical axis g¢-axis). Theradius ofcurvature of thdestfit sphere is

/l{bf =37.4056mm [12]. The besffit sphere is the one that touches the surface aixigd point.

The bestfit sphere curvatures calculated by taking the mean value of the sag around the

perimeter

20 (7 )
T (2.46)

where the angle brackets denote the average a&aip@round the perimeteverd. The offaxis
section of intereshas a diameter of®@mm.In Figure 9 (a) dwo dimensionaktross section of

the parabola and itsestfit sphere intersecting at the point of intersection (POI) along the local
normalare shownThe sag departure from the béssphere along the local normalpsesented

in Figure 9 (b).
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Figure9 (a) 2D Crosssection for fitting withgradient orthogonaD-polynomials; (b) The sag
departure from the befit sphere adapted from [12]

In three dimensionghepositions of the bedtt sphere angarabola arshown in Figure 10 (a).

The red grid shows the bds#tsphere that touches the parabola at the POljtangreen section
shows the offaxis section of interest. The green line is the normal at the P@QD £10) mm. In
Figurel0(b) the sag departure from the bditsphere for the offixis section of interest is
shown. Note the similarity between Figure 10 (b) and Figure 9 (b), which is just the central line

of the former.
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Figurel10(a) 3D view of the off axisection on the parabola and the Hastphere intersecting
and POlI, (b) the sag departure of the parabola off itsfibegthere over the offxis section
adapted from [12]

After performing a least square fit of the sag shown in Figure 10 (b), nve at the
coefficients for the fit. The tolerance for the fit is 1 riflne truncation of the series expansion
shown in Eq.(2.32) is T=8, which ism+2n=8. The slope orthogonal angradientorthogonal
Q-polynomialsareentirelycomputed with the recurrence relations in order to achieve robustness
and stability. For each azimuthal orderthe coefficient®of the fitting Qpolynomialsare given
in Table 1.In Table 1, we can see that the coefficients decrease in magnitude as their order
decreases, and the smallest coefficient is 1 nm, which is the tolerance we have for the error

profile.
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Tablel The coefficients for the gradieatthogonal Qpolynomials for fitting the sag shown in
Figure 10 (b)12].

by
(nm) "
0 1 2 3 4 5 6 7 8
0 11509 | 199278 | 592756| -72134 | 6311 | -274 | -27 | 8 -1
- 1 -218 | -187945| 16062 115 -145 17 -1
2 6 1353 -243 5 2
3 -35 5

The residual erroprofile for this least square fit with the gradient orthogongddynomials is
shown in Figure 11lt is clear from Figure 11 that tHfeeak to ValleyRV) error never reaches

the tolerance levealf 1nm that is set for the fit.

Figurell Profile of the esidual error for the fivith the gradient orthogon&)-polynomialsof
the sag shown in Figure 10(ladapted from [12]
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