You are here

Energy Harvesting toward the Vibration Reduction of Turbomachinery Blades via Resonance Frequency Detuning

Download pdf | Full Screen View

Date Issued:
2015
Abstract/Description:
Piezoelectric-based energy harvesting devices provide an attractive approach to powering remote devices as ambient mechanical energy from vibrations is converted to electrical energy. These devices have numerous potential applications, including actuation, sensing, structural health monitoring, and vibration control -- the latter of which is of particular interest here. This work seeks to develop an understanding of energy harvesting behavior within the framework of a semi-active technique for reducing turbomachinery blade vibrations, namely resonance frequency detuning. In contrast with the bulk of energy harvesting research, this effort is not focused on maximizing the power output of the system, but rather providing the low power levels required by resonance frequency detuning. The demands of this technique dictate that harvesting conditions will be far from optimal, requiring that many common assumptions in conventional energy harvesting research be relaxed.Resonance frequency detuning has been proposed as a result of recent advances in turbomachinery blade design that have, while improving their overall efficiency, led to significantly reduced damping and thus large vibratory stresses. This technique uses piezoelectric materials to control the stiffness, and thus resonance frequency, of a blade as the excitation frequency sweeps through resonance. By detuning a structure's resonance frequency from that of the excitation, the overall peak response can be reduced, delaying high cycle fatigue and extending the lifetime of a blade. Additional benefits include reduced weight, drag, and noise levels as reduced vibratory stresses allow for increasingly light blade construction.As resonance frequency detuning is most effective when the stiffness states are well separated, it is necessary to harvested at nominally open- and short-circuit states, corresponding to the largest separation in stiffness states. This presents a problem from a harvesting standpoint however, as open- and short-circuit correspond to zero charge displacement and zero voltage, respectively, and thus there is no energy flow. It is, then, desirable to operate as near these conditions as possible while still harvesting sufficient energy to provide the power for state-switching. In this research a metric is developed to study the relationship between harvested power and structural stiffness, and a key result is that appreciable energy can be harvested far from the usual optimal conditions in a typical energy harvesting approach. Indeed, sufficient energy is available to power the on-blade control while essentially maintaining the desired stiffness states for detuning. Furthermore, it is shown that the optimal switch in the control law for resonance frequency detuning may be triggered by a threshold harvested power, requiring minimal on-blade processing. This is an attractive idea for implementing a vibration control system on-blade, as size limitations encourage removing the need for additional sensing and signal processing hardware.
Title: Energy Harvesting toward the Vibration Reduction of Turbomachinery Blades via Resonance Frequency Detuning.
0 views
0 downloads
Name(s): Hynds, Taylor, Author
Kauffman, Jeffrey, Committee Chair
Das, Tuhin, Committee Member
Raghavan, Seetha, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2015
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Piezoelectric-based energy harvesting devices provide an attractive approach to powering remote devices as ambient mechanical energy from vibrations is converted to electrical energy. These devices have numerous potential applications, including actuation, sensing, structural health monitoring, and vibration control -- the latter of which is of particular interest here. This work seeks to develop an understanding of energy harvesting behavior within the framework of a semi-active technique for reducing turbomachinery blade vibrations, namely resonance frequency detuning. In contrast with the bulk of energy harvesting research, this effort is not focused on maximizing the power output of the system, but rather providing the low power levels required by resonance frequency detuning. The demands of this technique dictate that harvesting conditions will be far from optimal, requiring that many common assumptions in conventional energy harvesting research be relaxed.Resonance frequency detuning has been proposed as a result of recent advances in turbomachinery blade design that have, while improving their overall efficiency, led to significantly reduced damping and thus large vibratory stresses. This technique uses piezoelectric materials to control the stiffness, and thus resonance frequency, of a blade as the excitation frequency sweeps through resonance. By detuning a structure's resonance frequency from that of the excitation, the overall peak response can be reduced, delaying high cycle fatigue and extending the lifetime of a blade. Additional benefits include reduced weight, drag, and noise levels as reduced vibratory stresses allow for increasingly light blade construction.As resonance frequency detuning is most effective when the stiffness states are well separated, it is necessary to harvested at nominally open- and short-circuit states, corresponding to the largest separation in stiffness states. This presents a problem from a harvesting standpoint however, as open- and short-circuit correspond to zero charge displacement and zero voltage, respectively, and thus there is no energy flow. It is, then, desirable to operate as near these conditions as possible while still harvesting sufficient energy to provide the power for state-switching. In this research a metric is developed to study the relationship between harvested power and structural stiffness, and a key result is that appreciable energy can be harvested far from the usual optimal conditions in a typical energy harvesting approach. Indeed, sufficient energy is available to power the on-blade control while essentially maintaining the desired stiffness states for detuning. Furthermore, it is shown that the optimal switch in the control law for resonance frequency detuning may be triggered by a threshold harvested power, requiring minimal on-blade processing. This is an attractive idea for implementing a vibration control system on-blade, as size limitations encourage removing the need for additional sensing and signal processing hardware.
Identifier: CFE0005811 (IID), ucf:50039 (fedora)
Note(s): 2015-08-01
M.S.A.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): Piezoelectricity -- Vibrations -- Energy Harvesting -- Vibration Control -- Transient Vibration Analysis -- Turbomachinery
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005811
Restrictions on Access: public 2015-08-15
Host Institution: UCF

In Collections