You are here

Particle Manipulation Via Optical Forces and Engineering Soft-Matter Systems With Tunable Nonlinearities.

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
One of the most intriguing properties of light-matter interaction is the ability of an electromagnetic field to exert mechanical forces on polarizable objects. This phenomenon is a direct consequence of the fact that light carries momentum, which in turn can be transferred to matter. Mediated by scattering, this interaction usually manifests itself as a (")pushing force(") in the direction of beam propagation. However, it is possible to judiciously engineer these optical forces, either by tailoring particle polarizability, and/or by structuring the incident light field. As a simple example, a tightly focused laser beam demonstrates strong gradient forces, which may attract and even trap particles with positive polarizability in the focal volume. The opposite occurs in the regime of negative polarizability, where particles are expelled from the regions of highest intensity. Based on this fundamental principle, one can actively shape the beam using spatial light modulators to manipulate individual objects as well as ensembles of particles suspended in a liquid. In the latter case, a modulation of the local particle concentration is associated with changes of the effective refractive index. The result is an artificial nonlinear medium, whose Kerr-type response can be readily tuned by the parameters of its constituent particles.In the course of this work, we introduce a new class of synthetic colloidal suspensions exhibiting negative polarizabilities, and observe for the first time robust propagation and enhanced transmission of self-trapped light over long distances. Such light penetration in strongly scattering environments is enabled by the interplay between optical forces and self-activated transparency effects. We explore various approaches to the design of negative-polarizability arrangements, including purely dielectric as well as metallic and hybrid nanoparticles. In particular, we find that plasmonic resonances allow for extremely high and spectrally tunable polarizabilities, leading to unique nonlinear light-matter interactions. Here, for the first time we were able to observe plasmonic resonant solitons over more than 25 diffraction lengths, in colloidal nanosuspensions.
Title: Particle Manipulation Via Optical Forces and Engineering Soft-Matter Systems With Tunable Nonlinearities.
32 views
16 downloads
Name(s): Fardad, Shima, Author
Christodoulides, Demetrios, Committee Chair
Hagan, David, Committee Member
Amezcua Correa, Rodrigo, Committee Member
Likamwa, Patrick, Committee Member
Chen, Zhigang, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: One of the most intriguing properties of light-matter interaction is the ability of an electromagnetic field to exert mechanical forces on polarizable objects. This phenomenon is a direct consequence of the fact that light carries momentum, which in turn can be transferred to matter. Mediated by scattering, this interaction usually manifests itself as a (")pushing force(") in the direction of beam propagation. However, it is possible to judiciously engineer these optical forces, either by tailoring particle polarizability, and/or by structuring the incident light field. As a simple example, a tightly focused laser beam demonstrates strong gradient forces, which may attract and even trap particles with positive polarizability in the focal volume. The opposite occurs in the regime of negative polarizability, where particles are expelled from the regions of highest intensity. Based on this fundamental principle, one can actively shape the beam using spatial light modulators to manipulate individual objects as well as ensembles of particles suspended in a liquid. In the latter case, a modulation of the local particle concentration is associated with changes of the effective refractive index. The result is an artificial nonlinear medium, whose Kerr-type response can be readily tuned by the parameters of its constituent particles.In the course of this work, we introduce a new class of synthetic colloidal suspensions exhibiting negative polarizabilities, and observe for the first time robust propagation and enhanced transmission of self-trapped light over long distances. Such light penetration in strongly scattering environments is enabled by the interplay between optical forces and self-activated transparency effects. We explore various approaches to the design of negative-polarizability arrangements, including purely dielectric as well as metallic and hybrid nanoparticles. In particular, we find that plasmonic resonances allow for extremely high and spectrally tunable polarizabilities, leading to unique nonlinear light-matter interactions. Here, for the first time we were able to observe plasmonic resonant solitons over more than 25 diffraction lengths, in colloidal nanosuspensions.
Identifier: CFE0005610 (IID), ucf:50239 (fedora)
Note(s): 2014-08-01
Ph.D.
Optics and Photonics, Optics and Photonics
Doctoral
This record was generated from author submitted information.
Subject(s): Nanosuspesions -- Nonlinearity -- Polarizability -- Optical trapping -- Optical forces -- Soliton -- Self-trapped beams
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005610
Restrictions on Access: public 2015-02-15
Host Institution: UCF

In Collections