You are here

Low Absorption Liquid Crystal Materials for Midwave Infrared

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
Liquid crystal is an amazing class of soft matters with applications spanning from visible, infrared, millimeter wave, to terahertz. In addition to direct-view displays and projection displays, liquid crystal is also widely used in adaptive optics, tunable-focus lens, and laser beam steering. Although the visible region has well developed materials and mixtures for the vast variety of applications, the midwave infrared (MWIR) region of the electromagnetic spectrum invites much development as only a few materials have been developed with these applications in mind. Unlike visible region, the major challenge for mid-wave infrared liquid crystal is inherently large absorption loss. To reduce absorption, some molecular engineering approaches have been considered, such as deuteration, fluorination, and chlorination. The fluorine and chlorine not only act as the polar group to provide dipole moment but also helps shift some vibration absorption bands outside the MWIR window. Long phenyl ring compounds, fluorinated tolane materials, and chlorinated terphenyl mixtures are explored; as well as a look as the potential bromine might introduce for future development. In this thesis, we first review the current materials and their performance in the mid-wave infrared region, explain the need for higher performing liquid crystals, and then discuss the methodology of compound development and mixture formulation. Some new chlorinated liquid crystal compounds are synthesized, mixture formulated, and their properties evaluated. Finally, we will explain the future work which needs to be performed in this field.
Title: Low Absorption Liquid Crystal Materials for Midwave Infrared.
26 views
11 downloads
Name(s): Creekmore, Amy, Author
Wu, Shintson, Committee Chair
Moharam, Jim, Committee Member
Likamwa, Patrick, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Liquid crystal is an amazing class of soft matters with applications spanning from visible, infrared, millimeter wave, to terahertz. In addition to direct-view displays and projection displays, liquid crystal is also widely used in adaptive optics, tunable-focus lens, and laser beam steering. Although the visible region has well developed materials and mixtures for the vast variety of applications, the midwave infrared (MWIR) region of the electromagnetic spectrum invites much development as only a few materials have been developed with these applications in mind. Unlike visible region, the major challenge for mid-wave infrared liquid crystal is inherently large absorption loss. To reduce absorption, some molecular engineering approaches have been considered, such as deuteration, fluorination, and chlorination. The fluorine and chlorine not only act as the polar group to provide dipole moment but also helps shift some vibration absorption bands outside the MWIR window. Long phenyl ring compounds, fluorinated tolane materials, and chlorinated terphenyl mixtures are explored; as well as a look as the potential bromine might introduce for future development. In this thesis, we first review the current materials and their performance in the mid-wave infrared region, explain the need for higher performing liquid crystals, and then discuss the methodology of compound development and mixture formulation. Some new chlorinated liquid crystal compounds are synthesized, mixture formulated, and their properties evaluated. Finally, we will explain the future work which needs to be performed in this field.
Identifier: CFE0005594 (IID), ucf:50243 (fedora)
Note(s): 2015-05-01
M.S.
Optics and Photonics, Optics and Photonics
Masters
This record was generated from author submitted information.
Subject(s): Liquid Crystal -- midwave infrared -- low absorption
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005594
Restrictions on Access: public 2015-05-15
Host Institution: UCF

In Collections