You are here

Taming Wild Faces: Web-Scale, Open-Universe Face Identification in Still and Video Imagery

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
With the increasing pervasiveness of digital cameras, the Internet, and social networking, there is a growing need to catalog and analyze large collections of photos and videos. In this dissertation, we explore unconstrained still-image and video-based face recognition in real-world scenarios, e.g. social photo sharing and movie trailers, where people of interest are recognized and all others are ignored. In such a scenario, we must obtain high precision in recognizing the known identities, while accurately rejecting those of no interest.Recent advancements in face recognition research has seen Sparse Representation-based Classification (SRC) advance to the forefront of competing methods. However, its drawbacks, slow speed and sensitivity to variations in pose, illumination, and occlusion, have hindered its wide-spread applicability. The contributions of this dissertation are three-fold: 1. For still-image data, we propose a novel Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear regression to perform sample selection for l1-minimization, thus harnessing the speed of least-squares and the robustness of SRC. On our large dataset collected from Facebook, LASRC performs equally to standard SRC with a speedup of 100-250x.2. For video, applying the popular l1-minimization for face recognition on a frame-by-frame basis is prohibitively expensive computationally, so we propose a new algorithm Mean Sequence SRC (MSSRC) that performs video face recognition using a joint optimization leveraging all of the available video data and employing the knowledge that the face track frames belong to the same individual. Employing MSSRC results in a speedup of 5x on average over SRC on a frame-by-frame basis.3. Finally, we make the observation that MSSRC sometimes assigns inconsistent identities to the same individual in a scene that could be corrected based on their visual similarity. Therefore, we construct a probabilistic affinity graph combining appearance and co-occurrence similarities to model the relationship between face tracks in a video. Using this relationship graph, we employ random walk analysis to propagate strong class predictions among similar face tracks, while dampening weak predictions. Our method results in a performance gain of 15.8% in average precision over using MSSRC alone.
Title: Taming Wild Faces: Web-Scale, Open-Universe Face Identification in Still and Video Imagery.
32 views
18 downloads
Name(s): Ortiz, Enrique, Author
Shah, Mubarak, Committee Chair
Sukthankar, Rahul, Committee Member
Da Vitoria Lobo, Niels, Committee Member
Wang, Jun, Committee Member
Li, Xin, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: With the increasing pervasiveness of digital cameras, the Internet, and social networking, there is a growing need to catalog and analyze large collections of photos and videos. In this dissertation, we explore unconstrained still-image and video-based face recognition in real-world scenarios, e.g. social photo sharing and movie trailers, where people of interest are recognized and all others are ignored. In such a scenario, we must obtain high precision in recognizing the known identities, while accurately rejecting those of no interest.Recent advancements in face recognition research has seen Sparse Representation-based Classification (SRC) advance to the forefront of competing methods. However, its drawbacks, slow speed and sensitivity to variations in pose, illumination, and occlusion, have hindered its wide-spread applicability. The contributions of this dissertation are three-fold: 1. For still-image data, we propose a novel Linearly Approximated Sparse Representation-based Classification (LASRC) algorithm that uses linear regression to perform sample selection for l1-minimization, thus harnessing the speed of least-squares and the robustness of SRC. On our large dataset collected from Facebook, LASRC performs equally to standard SRC with a speedup of 100-250x.2. For video, applying the popular l1-minimization for face recognition on a frame-by-frame basis is prohibitively expensive computationally, so we propose a new algorithm Mean Sequence SRC (MSSRC) that performs video face recognition using a joint optimization leveraging all of the available video data and employing the knowledge that the face track frames belong to the same individual. Employing MSSRC results in a speedup of 5x on average over SRC on a frame-by-frame basis.3. Finally, we make the observation that MSSRC sometimes assigns inconsistent identities to the same individual in a scene that could be corrected based on their visual similarity. Therefore, we construct a probabilistic affinity graph combining appearance and co-occurrence similarities to model the relationship between face tracks in a video. Using this relationship graph, we employ random walk analysis to propagate strong class predictions among similar face tracks, while dampening weak predictions. Our method results in a performance gain of 15.8% in average precision over using MSSRC alone.
Identifier: CFE0005536 (IID), ucf:50313 (fedora)
Note(s): 2014-05-01
Ph.D.
Engineering and Computer Science, Electrical Engineering and Computing
Doctoral
This record was generated from author submitted information.
Subject(s): sparse representation -- l1-minimization -- face recognition -- identification -- classification -- video -- still-image
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005536
Restrictions on Access: public 2014-11-15
Host Institution: UCF

In Collections