You are here

Volume Phase Masks in Photo-Thermo-Refractive Glass

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
In many applications such as beam shaping, mode conversion, and phase encoding it is necessary to alter the spatial phase profile of a beam via a phase mask. Conventional techniques to accomplish this either involve surface relief profiling in thin films such as PMMA or refractive index modulation in bulk photorefractive crystals such as lithium niobate. These materials have been used extensively for the past several decades and perform admirably in low power conditions. However, in high power systems these materials will be destroyed, requiring a new means of producing phase masks. In this dissertation a method for producing robust phase masks in the bulk of photo-thermo-refractive glass is developed and successfully demonstrated. Three main applications of phase masks were studied in detail. The first is mode conversion, where binary phase masks convert a Gaussian beam to higher order modes. The second is beam shaping, where phase masks are used as focusing elements and for optical vortex generation. Near-theoretical conversion efficiency was achieved for all elements in these cases. The third application is aberration analysis and correction. Here the degradation of volume Bragg gratings recorded in an aberrated holographic system was modeled, with the simulations indicating that correcting elements are generally necessary for high-quality production of gratings. Corrective phase masks are designed which can selectively correct one or multiple aberrations of varying magnitudes are shown. A new type of optical element is also developed in which a phase mask is encoded into a transmitting Bragg grating. This technique combines the local phase modulation of a phase mask with the multiplexing ability of transmitting Bragg gratings, allowing for multiple phase masks to be recorded in a single element. These masks may be used at any wavelength satisfying the Bragg condition, increasing the useful wavelength regime of a single element by orders of magnitude.
Title: Volume Phase Masks in Photo-Thermo-Refractive Glass.
15 views
8 downloads
Name(s): Segall, Marc, Author
Glebov, Leonid, Committee Chair
Zeldovich, Boris, Committee CoChair
Dogariu, Aristide, Committee Member
Rahman, Talat, Committee Member
Bass, Michael, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In many applications such as beam shaping, mode conversion, and phase encoding it is necessary to alter the spatial phase profile of a beam via a phase mask. Conventional techniques to accomplish this either involve surface relief profiling in thin films such as PMMA or refractive index modulation in bulk photorefractive crystals such as lithium niobate. These materials have been used extensively for the past several decades and perform admirably in low power conditions. However, in high power systems these materials will be destroyed, requiring a new means of producing phase masks. In this dissertation a method for producing robust phase masks in the bulk of photo-thermo-refractive glass is developed and successfully demonstrated. Three main applications of phase masks were studied in detail. The first is mode conversion, where binary phase masks convert a Gaussian beam to higher order modes. The second is beam shaping, where phase masks are used as focusing elements and for optical vortex generation. Near-theoretical conversion efficiency was achieved for all elements in these cases. The third application is aberration analysis and correction. Here the degradation of volume Bragg gratings recorded in an aberrated holographic system was modeled, with the simulations indicating that correcting elements are generally necessary for high-quality production of gratings. Corrective phase masks are designed which can selectively correct one or multiple aberrations of varying magnitudes are shown. A new type of optical element is also developed in which a phase mask is encoded into a transmitting Bragg grating. This technique combines the local phase modulation of a phase mask with the multiplexing ability of transmitting Bragg gratings, allowing for multiple phase masks to be recorded in a single element. These masks may be used at any wavelength satisfying the Bragg condition, increasing the useful wavelength regime of a single element by orders of magnitude.
Identifier: CFE0005414 (IID), ucf:50431 (fedora)
Note(s): 2013-12-01
Ph.D.
Optics and Photonics, Optics and Photonics
Doctoral
This record was generated from author submitted information.
Subject(s): phase mask -- holography -- photosensitive glass -- amplitude mask
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005414
Restrictions on Access: campus 2015-06-15
Host Institution: UCF

In Collections