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ABSTRACT 

 
 Plaques of amyloid β peptide (Aβ) are a hallmark trait of Alzheimer’s disease (AD). However, 

the precise role of Aβ aggregates is not well understood. Recent studies have identified that naturally 

occurring N-terminal truncation and pyroglutamylation of Aβ significantly increases its neurotoxicity by 

an unknown mechanism. Content of pyroglutamylated Aβ (pE-Aβ) in AD brains has been shown to 

reach up to 50% of total Aβ. Modified pE-Aβ co-aggregates with Aβ by a seeding mechanism and forms 

structurally distinct and highly toxic oligomers. We studied structural transitions of the full-length Aβ1-

42, its pyroglutamylated form AβpE3-42, their 9:1 (Aβ1-42/AβpE3-42) and 1:1 molar combinations. 

 Transmission electron microscopy was used to directly visualize the fibrils of the samples in a 

buffer mimicking physiological environment. Atomic force microscopy measurements were done to 

determine rate of second nucleation events in fibrils. Thioflavin-T fluorescence indicated that low ionic 

strength suppressed the aggregation of AβpE3-42 but promoted that of Aβ1-42, suggesting different paths of 

fibrillogenesis of unmodified Aβ and pE- Aβ. Interestingly, AβpE3-42 at only 10% significantly facilitated 

the fibrillization of Aβ1-42 at near-physiological ionic strength but had little effect at low salt. 

 Circular dichroism and Fourier transform infrared (FTIR) spectroscopy were used to characterize 

the structural transitions during fibrillogenesis. In aqueous buffer, both unmodified Aβ and pE-Aβ 

peptides adopted parallel intermolecular β-structure. Interestingly, AβpE3-42 contained lower β-sheet 

content than 13C-Aβ1-42, while retaining significantly larger fractions of α-helical and turn structures. 

Structural details of Aβ and pE-Aβ combinations were unveiled by isotope-edited FTIR spectroscopy, 

using 13C-labeled Aβ1-42 and unlabeled AβpE3-42. When exposed to environmental humidity, AβpE3-42 not 

only maintained an increased fraction of α-helix but also was able to reverse 13C-Aβ1-42 β-sheet structure. 

These data provide a novel structural mechanism for pE-Aβ hypertoxicity; pE-Aβ undergoes faster 
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nucleation due to its increased hydrophobicity, thus promoting formation of smaller, hypertoxic 

oligomers of partial α-helical structure. 
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CHAPTER ONE: INTRODUCTION 
 

 Alzheimer’s disease (AD) affects more than 35 million people worldwide, with 5.5 

million of those in the United States.1 Plaques of amyloid β (Aβ) peptide are a hallmark trait 

of AD. However, the precise role of Aβ aggregates in AD is not well understood. The 

amyloid cascade hypothesis proposed that extracellular aggregates (plaques) were responsible 

for the onset of AD.2, 3 However, recent data identify soluble Aβ oligomers as neurotoxic 

agents, and show that insoluble, fibrillar aggregates are poorly correlated to brain atrophy.4-10 

Naturally, truncated and pyroglutamylated (pE-Aβ) peptides, such as the pyroglutamylated   

40 amino acids long Aβ (AβpE3-42), have been shown to aggregate at increased rates.11-13 

Recent studies have identified that pyroglutamylation of Aβ significantly increases its 

neurotoxicity even at low fractions. 14, 15 Interestingly, AβpE3-42 has been shown to be highly 

toxic to cultured neurons at the sub-micromolar range and at ≤5% of total Aβ protein.15 These 

data suggest that increased toxicity of AβpE3-42 is through a prion like mechanism. The 

structural nature of the differences in toxicity remains unknown and was explored in this 

work.  The main objective of this project is to gain insight into the molecular mechanism of 

altered fibrillogenesis of Aβ1−42, by studying the aggregation kinetics and accompanying 

structural changes in its pyroglutamylated form AβpE3-42, their 9:1 (AβpE3-42,Aβ1-42), and 1:1 

molar combinations. Our data suggest that under certain conditions AβpE3-42 resists 

fibrillogenesis and inhibits cross-β structure formation of Aβ1-42. This implies that the higher 

AβpE3-42 toxicity may be related to its propensity to form low molecular oligomers. We show 

data collected using a plethora of biophysical techniques, which give new insights into Aβ 

behavior under physiologically relevant conditions.  
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Discovery Of Alzheimer’s Disease 

 

The neurological ailment AD is named after German neuropathologist and clinician 

Aloysius Alzheimer.16 After receiving his medical degree at the University of Wuzbürg  in 

Lower Fraconia, Germany. He was hired at the Municipal Asylum for the Insane and 

Epileptic in Frankfurt.16 This is where he received a patient in which he first identified the 

disease that bears his name. 16 In 1901 a woman called Auguste Deter was admitted to the 

hospital and examined by Alzheimer and was found to show a wide array of symptoms such 

as reduced memory, paranoia and unpredictable behavior.17 A colleague of Alzheimer, Emil 

Kraepelin, published in 1910, the 8th edition of his clinical psychiatry textbook in which the 

term Alzheimer’s disease was born.17  

What Alzheimer first observed in the cerebral cortex of August Deter’s brain is 

probably Aβ peptide aggregates. This peptide is suspected to be a protagonist in the onset 

and development of AD. The Aβ peptide is found in AD brains   and forms large 

extracellular aggregates called amyloid plaques. The identification of the Aβ led to the 

study of the disease at a biophysical and biochemical level. Nearly a century after 

Alzheimer’s discovery and initial studies there is no clear established mechanism for the 

etiology of AD.18 Nonetheless, there has been some modification of the amyloid cascade 

hypothesis over the years; current research is shifting towards the toxicity of small soluble 

oligomers and not insoluble plaques. 5, 6, 19-21 
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Identification of The Amyloid β Peptide And Its Pyroglutamated Form 

 

The Aβ peptide has been primarily focused on the study of Alzheimer’s disease 

since it was first identified. This peptide is a cleavage product after β-secretase and γ-

secretase act on the Amyloid precursor protein (APP).22 The most abundant amyloid 

peptides range from 39 to 42 residues long.23 The 40 residue amyloid peptide (Aβ1-40) and 

Aβ1-42 have been the most extensively studied. However, pE-Aβ  such as AβpE3-42 have 

received much attention in recent years since its first discovery in 1985.24 Both Aβ1-42 and 

AβpE3-42 have been shown to form micron long cross β-sheet fibrils when incubated in 

aqueous buffer.25-28 Additionally, there is evidence showing that incubation conditions 

and presence of seeding species affect final fibril morphology.28 Previously, fibrillar 

plaques were thought to have a high correlation with cell toxicity and death.2, 3 Recent 

attention is focused on oligomeric species and not fibrils as being the toxic entities.  

 Determination of the etiology and treatment of AD has increased in complexity since 

the discovery of post-translationally modified pE-Aβ. Their production occurs when the first 

two amino acids are truncated by aminopeptidases and glutamate at position three is 

cyclized by Glutaminyl Cyclase.14 The loss of two charges increases hydrophobicity and has 

been shown to cause more rapid aggregation.29  Even though pE-Aβ have been shown to 

aggregate at faster rates compared to their unmodified forms, some data shows it to have an 

inhibitory effect on peptide fibrillization.30 Indeed, there exists data showing that Aβ1-42 

aggregates faster than AβpE3-42. 31 The percentage of AβpE3-x has been reported to vary from a 

few % to more than 50% of total Aβ.32, 33 It has been suggested that Aβ toxicity depends on 

peptide ratio and not total Aβ amount.34 
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Evolution Of The Amyloid Cascade Hypothesis 

 

The amyloid cascade hypothesis originally pointed at insoluble extracellular aggregates 

as the toxic species in AD.  Genetic evidence shows a link between a mutation in APP and 

presenilin and higher risk of developing AD.35-38 These mutations lead to familial 

Alzheimer’s disease (fAD). Additionally, these mutations are thought to increase the risk of 

AD by increasing Aβ peptide production. 39 These data suggest a strong link between the 

onset of AD and higher concentrations of Aβ peptides.   

The formation of neurofibrillary tangles made of Tau protein has been shown to be 

neurotoxic.40  It has been shown that cultured rat neurons treated with oligomeric Aβ species, 

displayed translocation from Tau rich axons to dendrites.41 Alternatively, some studies have 

identified plaques in brains that do not show pathological Alzheimer’s symptoms.42 In 

addition, oligomeric species have been found at higher concentration in human brains with 

cognitive impairment.43  Finally, it has been suggested that toxicity is detected before plaques 

are observed in the brain.5  In fact, there has been data showing that Aβ  fibrillar seeds and 

monomers may be benign or even protective.44, 45  

These data have led to the modification of the amyloid cascade hypothesis to one in 

which soluble oligomers like dimers, trimers and dodecamers are the cytotoxic entities.44, 46-49 

Soluble oligomers have been shown to act through several mechanisms such as endoplasmic 

reticulum (ER) calcium leakage, synaptic loss and have been shown to interact with cell 

membrane receptors.50, 51  
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Experimental Pitfalls In Previous Aβ Study 

 

Concerns have been raised that non physiological experimental conditions of 

Aβ studies might have led  to incorrect conclusions about its toxic effect.20 Also, that 

Aβ peptides have been thought to be associated to other cellular components and hence some 

studies are too narrow in breadth.20Non-physiological conditions such as high ionic strength, 

acidic and alkaline buffers have been used to determine Aβ behavior. 11, 31 These strategies 

have given some insight into the fibrillization kinetics of Aβ. Unfortunately, results from a 

highly varied degree of conditions have also been very diverse. Additionally, increased 

calcium concentrations have been shown to increase fibrillization rates of Aβ peptides.52  A 

group of chaperones identified as “Aβ pathological chaperones” of which Acetylcholinestrase 

is an example, have been identified.53 Acetylcholinesterase is thought to aid and increase 

Aβ fibrillization.53  Therefore, it is important to provide a more in depth structural and 

functional description of Aβ peptides.  

 The aim of this work was to study the effect AβpE3-42 on Aβ1-42 structure and 

aggregation. By doing this in varying buffer conditions we are able to determine the role of 

ionic strength on Aβ conformation and fibrillization kinetics. This work also aimed at 

determining several intermediates during the oligomerization process. Different structural 

intermediates can help shed light on the structural effects of AβpE3-42 on Aβ1-42 and its role in 

AD. It is important to emphasize that aggregation and fibrillization kinetics are of high 

importance in the elucidation of the role of Aβ in AD.  Structural characteristics of 

oligomeric species will probably pave the way to  new AD  mechanistic understanding. 

Presently, these “pathological conformations”  remain elusive.54 
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CHAPTER TWO: LITERATURE REVIEW  
 

 The interdisciplinary nature of this project required a careful analysis of a large pool 

of previously published results. AD research is primarily focused on the study of Aβ peptides 

and the role they play in disease pathology. The molecular aspect of Aβ peptides was 

researched to gain insight on the current knowledge of their cytotoxic effect on the brain. 

This information was essential to determine cytotoxicity differences between 

pyroglutamylated and unmodified Aβ. The ratio of modified to unmodified Aβ peptides was 

an important piece of data, required for effective design of experimental procedures.  

 This project employed several techniques which include: i) Fourier transform infrared 

(FTIR) spectroscopy ii) circular dichroism (CD) iii) aromatic amino acid fluorescence iv) 

atomic force microscopy (AFM) v) Thioflavin T (ThT) fluorescence assay and vi) 

transmission electron microscopy (TEM).  

 Initially our strategy was to determine AβpE3-42 and Aβ1-42 secondary structure in dry, 

aqueous buffer and organic solvent conditions.  Indeed, many structural studies have been 

done on amyloid peptides such as Aβ1-40. 
27 Solid-state nuclear magnetic resonance (ssNMR) 

elucidated the amyloid cross β-sheet structure.27 These β-sheet rich motifs have been 

identified  in Aβ peptides,55, 56and in other proteins related to a variety of  diseases57, such as 

Huntington’s disease,58 Parkinsons disease,59  light chain amyloidosis,60 and Diabetes.61 
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Alzheimer’s Disease Etiology 

 

 Aβ peptides are cleavage products from the amyloid precursor protein.1 Enzymes 

called β-secretase and γ-secretase cleave Aβ from APP as mentioned above. Mutations in γ-

secretase, the active portion of presenilin-1,62  are associated with fAD, which accounts for  

<5% of total AD case.63 It is interesting to note that even though AD was discovered nearly 

100 ago there is still no treatments that reverse or stop cognitive decline. There have been 

many attempts to identify AD causing factors.  Apolipoportein E (ApoE), specifically the ε4 

allele has been associated with an increased risk of AD when compared to ε2 and ε3 

alleles.64ApoE has many roles. It has strong binding affinity for Aβ and cholesterol.65, 66 This 

can lead to a higher accumulation of Aβ in the intracellular space and also could starve the 

cell of cholesterol. Certain diet tendencies have also been associated to AD.67 Some studies 

have suggested that the intake of omega-3 fatty acids reduces the risk of AD.68, 69 Moreover, 

Tau proteins are related to neurofibrillary tangles (NFT’s) which are suspected of having a 

pathological role in AD.  Tau proteins are microtubule associated proteins that serve to 

stabilize microtubules. NFT’s form when highly phosphorylated tau aggregates.70 Other data 

suggest toxicity of tau oligomers.71  

 AD is associated with advanced age. Specifically, vascular changes and pathologies 

are associated with aging and AD.  Cerebral amyloid angiopathy (CAA), where Aβ peptides 

are deposited on leptomeningeal and cortical blood vessel walls are associated with aging, 

AD and other pathological states of vasculature.72  Calcium homeostasis dysregulation has 

also been extensively investigated as having a causative role in AD.73-75 Indeed, data has 

shown that physiologically relevant calcium concentrations increase Aβ1-42 fibrillization 
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 rate.52 Pore formation capacity on cell plasma membranes of Aβ peptides has also been 

linked to calcium homeostasis dysregulation 76, 77  

 Several mechanisms have been proposed to explain how Aβ peptides elevate calcium 

levels by pore formation. Neurotoxic species of Aβ have structural and functional homology 

with pore forming bacterial toxins.78 The conformation specific antibody A11 binds 

selectively to Aβ1-42 oligomers as well as perforin and α-hemolysin, indicating a similarity in 

oligomeric structure of pore forming and amyloid peptides.78 Pores are thought to form on the 

cell membrane and thus increase influx of calcium into the cytoplasm, thereby rendering the 

neurons susceptible to excitotoxicity. 73 Other models show pores forming on the ER surface, 

leading to an increase in calcium concentration in the cytosol. The ER pathway suggest that 

intracellular Aβ binds to ryanodine receptors, followed by abnormal activation of 

phospholipase C,  which  triggers further Phosphatidylinositol (3,4,5)-triphosphate  (PIP3)-

mediated ER calcium  release, leading to apoptotic cell death.50 In other experiments, Aβ1-42 

has been shown to promote production of ryanodine receptor mRNA and protein in mice 

primary cortical neurons.79 Additionally, Aβ have been shown to cause a calcium dependent 

cytotoxic effect on rat brain endothelial cells.80  

 Some cell membrane receptors have been shown to bind Aβ1-42. Oligomeric Aβ1-42 

has a high binding affinity for the leukocyte immunoglobulin like receptor B (LilrB2).51 Mice 

experiments confirmed that Aβ1-42 interacts with PirB, a LilrB2 homolog, and diminishes 

ocular dominance plasticity.51 Aβ soluble oligomers have also been shown to bind with high 

affinity to lipid anchored cellular prion protein (PrPc) on the postsynaptic density. 81The 

mGluR5 transmembrane receptor links PrPc to an intracellular kinase called Fyn; downstream 

effects promote dendritic loss.81 
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 Phosphatidylserine exposure increases Aβ ability to associate to the cell membrane. 82 

It is possible that age related mitochondrial defects increase phosphatidylserine content on the 

outer cell membrane. Decreased cytosolic adenosine triphosphate (ATP) and the presence of 

cells in G1 stage had positive correlation with Aβ binding and an increased cytosolic calcium 

concentration. 82 Moreover, data has shown that Aβ1-42 cytotoxicity is affected by membrane 

cholesterol concentration.83-85  Some experiments show that cholesterol deficient plasma 

membranes are more susceptible to toxic effect of Aβ.83 While others state that increased 

cholesterol content facilitates Aβ toxicity.86  

 Mitochondria impairments have been linked to AD.87, 88  With increased age there is 

an increase in mitochondria oxidative stress.89 Reactive oxygen species (ROS) generated 

from mitochondria increase Aβ formation. 89 Interestingly, Aβ has been found in 

mitochondria of AD in both monomeric and oligomeric forms.89 This suggests a role of Aβ in 

mitochondrial related defects in AD .  The electron transport chain is involved in producing 

the cell’s energy in form of ATP. Oxygen is the final electron acceptor and is subsequently 

reduced to water. In this process ROS can oxidize lipids, mitochondrial DNA, and proteins 

which in turn increase mitochondrial degeneration.90 Excessive mitochondrial fission has 

been observed in AD, this may lead to dysfunction in mitochondria and thus impaired 

neurons. Intraneuronal Aβ has been show to bind to fission related dynamin related protein 

(Drp1).91 Mitochondrial fission genes expressing Drp1 and fission 1 (Fis1) have been shown 

to be upregulatd in AD brains.91 This probably leads to an imbalance in mitochondrial 

dynamics which can lead to cell death.  
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Aβ And pEAβ  Comparison 

 

 With the discovery of pyroglutamylated amyloid peptides arose a need to determine 

its cytotoxic effect and shed light on its role in AD. After cleavage from APP, the N-terminal 

aspartate and alanine are nonspecifically truncated by intracellular aminopeptidases, followed 

by cyclization of glutamates at position 3. Loss of two charges (the N-terminal primary amine 

and the Glu3 side chain carboxyl) increases hydrophobicity; faster aggregation kinetics have 

been observed for AβpE3-42. Concentrations of pyroglutamylated Aβ in the AD brain have 

been shown to reach 50% of total Aβ. 

 Data suggest that the ratio of Aβ and pEAβ has a significant effect on cytotoxicity 

and aggregation kinetics.25, 30 A literature search of fibrillization studies resulted in 

conflicting data. Some reports showed pEAβ to aggregate faster than Aβ1−42,11, 30, 92 while 

others showed the opposite 31 Importantly, one group has reported that AβpE3-42 inhibits 

Aβ1−42 fibrillization and cross β-sheet formation by TEM studies.30 Pyroglutamylation of Aβ 

increases resistance to aminopeptidases and astrocyte induced degradation.25 Even though 

there has been extensive studies comparing Aβ1-42 and AβpE3-42, an understanding in unique 

features in the structural effect of AβpE3-42 on Aβ1-42 has not been reached. Our work aims to 

elucidate these features under physiologically relevant conditions.  

  



11 
 

Methodology literature review 

 

 This project applied a wide array of biophysical techniques. Protocols will be 

discussed in the methods chapter and only a brief overview of searched literature is provided 

below. We followed a careful series of steps to elucidate the fibrillization kinetics, peptide 

secondary structure and fibril morphology. The effect of ionic strength on structure and 

fibrillization was also studied. ThT binding assays probed fibril formation in solution. ThT 

has been shown to fluoresce in the visible range when bound to cross β-sheet structure 

formed by fibrils.93-95 

 Previously published data helped us develop optimal ThT concentrations. We 

employed CD, FTIR, and isotope edited FTIR  to investigate secondary structure and 

interactions between Aβ1-42 and AβpE3-42. Interpretation of CD spectra was aided by searching 

previous published protocols.96 Positions of secondary structure components in the infrared 

Amide I region were researched.97  Importantly, the effect of 13C isotope presence in peptide 

was reviewed to help determine shift in Amide I.98, 99  

 Fibril morphology was probed by TEM and AFM. Preparation of fibrils and amyloid 

aggregates was researched.28, 100-103 Optimal buffer conditions were also determined. TEM 

and AFM substrates were carefully selected for sample preparation. We used graphene coated 

grids for TEM which provide superior resolution of amyloid peptides.104 Mica was the 

substrate used for AFM.   
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CHAPTER THREE: RESEARCH METHODS 
 

 This work aims to determine the secondary structure and the strength of association 

between AβpE3-42 and Aβ1-42 in dry, aqueous buffer and intermediate conformations. Isotope 

edited FTIR is an ideal approach for this purpose. Subsequently, the effect of AβpE3-42 on 

Aβ1-42 fibril formation determined by ThT will be investigated. Finally, fibril morphology 

will be probed by TEM and AFM measurements. Our experimental samples consisted of Aβ1-

42, AβpE3-42, their 9:1 (Aβ1-42/AβpE3-42) and their 1:1 molar combinations. Aβ peptides adopt a 

α-helical conformation in HFIP. 105, 106 Moreover, fluorinated alcohols have been shown to 

break up aggregates and promote monomeric state of Aβ peptides.105, 106 CD proved to be 

optimal when estimating peptide secondary structure in HFIP. FTIR showed secondary 

structure of desiccated peptides and in bulk aqueous buffer. By 13C uniform labeling of Aβ1-42 

we are able to dissect peptide mixtures when this peptides is combined with unlabeled AβpE3-

42.   This is achieved since 13C labeled peptides show a downshift of the Amide I band of  ~45 

cm-1. 

 By following ThT fluorescence we were able to study fibril formation from a 

monomeric state. Our experiments were done under two buffer conditions i) 50 mM 

phosphate and 50 mM sodium chloride, at pH 7.2  and ii) 10 mM phosphate at pH 7.2. These 

buffer conditions were selected to determine the effect of ionic strength on peptide structure 

and fibrillization kinetics. TEM and AFM were performed to determine characteristic 

differences between fibrils and to identify second nucleation sites. Combining data from 

these techniques permitted the careful study of Aβ1-42 and AβpE3-42 behavior under varying 

conditions.  Below there is a detailed description of the conditions and procedures used to 

collect and analyze the data presented in this project.  
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Secondary Structure And Fibrillization Kinetics Studies 

 

 Secondary structure of peptides was determined using CD and FTIR. Peptides 

secondary structure is of upmost importance in determining protein behavior, interaction with 

their surroundings, and function. Initially, peptides were dissolved in HFIP to disperse 

previously formed aggregates. To remove HFIP, samples were gently dried with a stream of 

nitrogen and vacuum desiccated for 15 minutes. The CD measurements were performed on 

Aβ peptides using 4mm quartz cuvettes and measured using a Jasco J-810 spectropolarimeter 

with a fluorescence attachment (Tokyo, Japan). ThT binding assay was taken simultaneously 

with CD. Both buffer conditions mentioned above were used for comparing the effect of salt 

on Aβ behavior. 

 CD was measured in HFIP dissolved peptides using a 0.5 mm cylindrical cuvette. 

Measurements in buffers were performed on 50 µM solutions over a time span of 24 hours, 

while gently stirring. CD spectra were measured ranging from 180 nm to 330 nm. ThT was 

excited at 440 nm and emission was recorded from 430 nm to 540 nm. Maximum intensity 

vs. time graphs were plotted. In the case for ThT the emission maximum was determined to 

be 483 nm and was baseline corrected by subtraction of the signal at 540 nm.  

  Further structural assessment was achieved by isotope edited FTIR. The spectra were 

measured on a Vector-22 FTIR spectrometer (Bruker Optics, Billerica, MA, USA) equipped 

with a liquid nitrogen-cooled Hg-Cd-Te detector, at 2 cm-1 nominal resolution. Measurements 

were taken using two peptide stock concentrations in HFIP. First, 13C labeled Aβ1-42 and 

AβpE3-42 were dissolved at 200 µM in HFIP. Forty  µL of each peptide and their 9:1 and 1:1 

mixtures were placed on a CaF2 FTIR window and then desiccated for 15 minutes to remove 
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residual HFIP. Transmission spectra in buffer were taken using 1000 consecutive scans while 

dry samples were taken using 500 scans and absorption was calculated using appropriate 

reference transmission spectra. 

 Samples containing peptides by themselves and in mixture were exposed to air to 

determine the effect of moisture on the secondary structure. Presence of increased moisture 

was confirmed by the increase in the H2O stretching bands near 3,200 cm-1.97 

 Subsequently peptide stocks were made at 50 µM in HFIP. Secondary structure for 

these samples was probed under two different bulk buffer conditions mentioned above. 

Eighty µL of peptide solution were dried and desiccated as mentioned above. After 

measuring dry spectra 80 µL of bulk D2O buffers were added and samples were sandwiched 

between 2 CaF2 windows using a 50 µm Teflon spacer, and measured using 1000 scans for 

several hours to observe changes in secondary structure. The pD of D2O buffers was 6.8 

corresponding to pH 7.2. D2O is used instead of H2O because H2O absorbs in the amide I 

region and obscures the protein signal.107 Reference spectra for both buffers were taken in a 

similar fashion without the presence of peptide for calculation of absorption spectra.   
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Fibril Morphology by TEM and AFM 

 

 TEM and AFM measurements were performed to probe Aβ fibril and aggregate 

morphology. For TEM, peptides were dissolved in HFIP and dried as described above. Dried 

peptide film was resuspended to 50 µM using 50 mM phosphate with 50 mM NaCl buffer at 

pH 7.2. Samples were stirred at 37oC for 24 hours. Five µL of peptide preparations were 

placed on graphene coated grids. After 5 minutes excess water was wicked off. Samples were 

washed twice with diH2O, and were negatively stained with 3% uranyl acetate. After 

washing, samples were measured using a JEOL TEM-1011 (Tokyo, Japan) operated at 80kV. 

Data was collected at several time points 2,4,12 and 24 hours to determine aggregation and 

fibrillization states of peptides.  

 AFM sample preparation was similar to TEM. After 24-hour incubation, 25 µL of 

fibril preparation was placed on freshly cleaved mica. Mica was incubated for 24 hours to let 

fibrils adsorb to the substrate. Then mica was washed with ultra-pure water and vacuum 

desiccated for 15 minutes. Measurements were taken using a Dimension 5000 Atomic Force 

Microscope system (Digital instruments, Santa Barbara, Ca, USA) equipped with a silicon tip 

with a length of 160 mm, thickness of 4.6 mm, and width 45mm.  Amplitude and height 

profiles helped elucidate fibril morphological characteristics.  
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CHAPTER FOUR: RESULTS 
 

 In this work we examined Aβ1-42, AβpE3-42, their 9:1 (Aβ1-42/AβpE3-42) and 1:1 molar 

combinations. Previous data have shown that Aβ oligomeric mixtures  containing low % of 

AβpE3-42, have increased neurotoxicity  when compared to Aβ1-42 alone, and are structurally 

distinct.15 This suggests that differences in toxicity levels are related to Aβ oligomer 

secondary structure. We hypothesized that AβpE3-42 and Aβ1-42 have strong intermolecular 

interactions in buffer.   

 Both Aβ1-42 and AβpE3-42 aggregate into amyloid fibrils. Some disagreements have 

arisen concerning which has increased fibrillization rate. Some data show that Aβ1-42 

fibrillizes faster than AβpE3-42,31 while others point to the opposite.11 Aggregation pathways 

are of significance, since intermediate oligomeric species and not mature amyloid fibrils are 

thought to be the neurotoxic entities in AD.108 Some data suggest that mature fibrils might be 

neuroprotective, by sequestration of monomers, and thus inhibition of oligomer formation.109 

In our studies we focused on the effect of salt concentrations on Aβ structure and 

fibrillization. Based on these data we hypothesized that varying buffer conditions promote 

diverse trends in aggregation.    

  Data from this project resulted in significant advancements in the understanding of 

Aβ peptides, which can be divided into two main ideas. AβpE3-42 affects Aβ1-42 structure and 

fibrillization kinetics when combined at disease relevant ratios. Secondly, ionic strength plays 

a determining role in Aβ structure and aggregation.  
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 Strong solvents such as HFIP have been reported to promote monomeric state of Aβ 

peptides.110 In HFIP Aβ1-42 has been shown to be in α-helical and unordered 

conformations.111 Peptide samples in α-helical conformation show negative minima around 

222 nm and 208 nm.112 Unordered structures are characterized by a strong negative band near 

200 nm.112  CD spectra confirmed α-helical and unordered secondary structures for all 

samples in HFIP (fig. 1 a). Additionally, AβpE3-42 shows a reduced ratio of ellipticities, 

θ208/θ222, this indicates a more flexible, unordered α-helix.113
  The α-helical conformation is 

present after desiccation as seen in (fig. 1 b). This permits us to follow fibrillization from 

initial non-aggregated states.  

 Presence of bulk aqueous buffer promotes structural changes on Aβ samples and their 

combinations (fig. 1 c).Both Aβ1-42 and the 9:1 combination show a negative band around 

218, corresponding to β-sheet structure.96  Wider and broader negative bands for AβpE3-42 and 

the 1:1 combination suggest a combination of α-helix with β-sheet.114 Interestingly, a higher 

molar concentration of AβpE3-42  reduces β-sheet propensity and is similar to AβpE3-42 by itself, 

as shown by the 1:1 combination spectrum. Our data show that Aβ1-42 and AβpE3-42 contain 

distinct structural features in buffer. Additionally, at equimolar concentrations AβpE3-42 is able 

to transmit structural features to Aβ1-42, and promote a more helical conformation, by 

decreasing β-sheet content.  
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Figure 1. CD spectra of Aβ1-42 (green), AβpE3-42 ( light blue), 9:1 Aβ1-42/AβpE3-42  (blue) and 
1:1 (red) peptide  combinations in HFIP (A), desiccated (B), and bulk buffer (C) conditions. 
Buffer composition is 10 mM Na,K-phosphate at pH 7.2. 

 

 For further elucidation of unique structural features of individual and mixed Aβ 

peptides, isotope edited FTIR was employed. Uniform isotope enrichment of the backbone 

carbons of Aβ1-42 produces a spectral downshift of ~45 cm-1. In buffer conditions 13C-Aβ1-42 

shows prominent intermolecular β-sheet structure as evidenced by a peak around 1585 cm-1 

(fig. 2 blue line).  In bulk buffer conditions AβpE3-42 shows absorbance around 1628 cm-1 

corresponding to β-sheet (fig. 2 red line). Interestingly, the pyroglutamylated peptide also 

shows significant absorbance ranging from 1650 to 1680 cm-1.  This indicates that AβpE3-42 is 

in partial α-helical conformation, while Aβ1-42 is mostly β-sheet. The amide II provides 

additional structural information. Open, or solvent accessible tertiary structures  undergo 

rapid hydrogen/deuterium exchange. This results in reduction of the amide II band at ~1540 

cm-1.115 Data from figure 2 shows that 13C-Aβ1-42 retains significant absorption at the amide II 

band. This suggests that 13C-Aβ1-42 forms tight tertiary structure.  Tight intermolecular β-

sheets are indicative of fibril cross β-sheet structure.116, 117 Conversely, AβpE3-42 forms an 

open solvent accessible structure, shown by a loss of amide II absorption. These data agree 

with the CD data  in figure 1. Unmodified Aβ1-42 forms tight intermolecular β-sheet, while 
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AβpE3-42 forms an open solvent accessible partially α-helical structure. These data suggest 

that partial α-helical structures and not fibril cross β-sheet are the hypertoxic species in AD.  

 

Figure 2. FTIR spectra AβpE3-42  (red line) and 13C-Aβ1-42 (blue line) in 10 mM Na,K 
Phosphate buffer (pD 7.2). Peptide concentration is 100 µM. 

  

  Further FTIR measurements were performed at 50 µM, on desiccated peptide 

samples. Presence of α-helical conformation after HFIP desiccation was probed. Spectra for 

Aβ1-42 and AβpE3-42 show predominant α-helical peak around 1658 cm-1 as shown in (fig. 3 

a,b). Spectra of both 9:1 (13C-Aβ1-42/AβpE3-42) (fig. 3 c) and 1:1 (13C-Aβ1-42/AβpE3-42) (fig. 3 

d) show prominent α-helical component belonging to AβpE3-42 near 1660 cm-1. In the 9:1 

combination the peak at 1618 cm-1 shows the α-helical structure of isotope enriched 13C-Aβ1-

42. Conversely, the absorption profile of the sample with equimolar peptide concentrations 

shows a peak at around 1604 cm-1. This peak is probably irregular secondary structure of 13C-

Aβ1-42. This low frequency component difference in the combination measurements led us to 

explore the possibility that hydration levels or varying peptide ratios exerted an effect on 

amyloid secondary structure. Aβ peptides absorb atmospheric humidity, which results in H2O 

stretching and increase in intensity at  ~3270 cm-1.97 Humidity exposure of combinations 
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helped determine if conformational changes were caused by peptide interactions and/or 

exposure to moisture. As shown in  (fig. 4) Aβ1-42 contains the highest amount of humidity 

followed by the 1:1 combination; AβpE3-42 and  the 9:1 contain the  lowest and a very similar 

amount of humidity. The 1:1 combination and Aβ1-42 show different secondary structure 

components while having similar amounts of humidity. These data motivated experiments 

where the effect of AβpE3-42 on Aβ1-42 structure was investigated in bulk buffer conditions at 

10% and 50% AβpE3-42. 

 

Figure 3. FTIR of desiccated Aβ1-42 (A), AβpE3-42 (B), 9:1 (13C-Aβ1-42/AβpE3-42) (C), and 1:1 
(13C-Aβ1-42/AβpE3-42)  (D) molar combinations. Peptide dried from a 50 µM stock. 
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Figure 4. H2O stretching mode of Aβ1-42 (green), AβpE3-42 (light blue), their 9:1 (blue) and 1:1 
(red) molar combinations under desiccated conditions. 

  

 Interpretation of previously published toxicity data led us to hypothesize that AβpE3-42 

interacts strongly with Aβ1-42. Dot blot experiments showed that oligomers of  Aβ1-42 and 

AβpE3-42 combinations are in distinct structural conformations, when compared to single 

peptide oligomers.15 We hypothesized that combining Aβ1-42 and AβpE3-42 affects their 

secondary structure. FTIR was employed pursuing two specific goals. First, determine that 

AβpE3-42 and 13C-Aβ1-42 have close intermolecular interactions. Secondly, probe the structural 

effects of the pyroglutamylated peptide on the unmodified Aβ. 

 We studied the effect of AβpE3-42 at 10% and 50% total peptide content. To determine 

the presence of intermolecular interactions we compared the mixture spectra to the weighted 

average sum spectra of the peptides by themselves.  At 10% AβpE3-42 the β-sheet peak at 1585 

for 13C-Aβ1-42 is upshifted by 3 cm-1, and by 10 cm-1 at equimolar concentrations (fig. 5 a). 

The β-sheet component around 1626 cm-1 for AβpE3-42 upshifts by 10 and by 4 cm-1 when at 

10% and 50% total peptide, respectively. This shows strong vibrational coupling between 

both species, implying that AβpE3-42 and Aβ1-42 form mixed β-sheet structures with strong 
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intermolecular interactions. Additionally, at equimolar concentrations the averaged sum 

shows significantly larger turn component (fig. 5 b), evidenced by increase absorption near 

1671 cm-1, when compared to the mixture spectra.   

 Transition of Aβ peptides from α-helical when dry to β-sheet when exposed to buffer 

led us to hypothesize that exposure to environmental humidity would have an effect of peptide 

secondary structure. These data could shed light on intermediate conformations preceding  

fibrillar cross β-sheet structure. Structural effects were probed by exposing 9:1 (13C-Aβ1-

42/AβpE3-42)   and 1:1 molar combinations to environmental humidity for established periods of 

time. And infrared measurements were collected.  

 The initial 9:1 combination spectra taken after 10 minutes of incubation is dominated 

by the spectral features of the 13C-Aβ1-42 i.e. α-helical at 1617 cm-1  and β-sheet component at 

1592 cm-1 (fig. 6 a).  The peak at 1655 cm-1 represents the α-helical component of the AβpE3-

42. The 20 minute spectrum shows a α-to-β transition of the 13CAβ1-42 as shown by blue line. 

Strikingly, the β-sheet content in the 20 minutes incubated sample is lower than expected 

without the interaction of the peptides ( the weighted sum of the individual spectra incubated 

for 15 minutes represented by the green line). This data suggest that AβpE3-42 slows down 

fibrillization at 10% total Aβ. 

.  



23 
 

 

Figure 5. FTIR spectra of 13CAβ1−42 and AβpE3-42 combined at 9:1 (A) and 1:1 (B) molar 
ratios, incubated in a D2O-based 10 mM Na,K phosphate buffer (pD 7.2) for 2 h, at a total 
peptide concentration of 100 μM. Blue and green lines are the experimental spectra obtained 
on the two peptides combined in one sample and the weighted sums of individual spectra, 
respectively. The weighted sums were obtained as A = ΣfiAi, where fi is the molar fraction 
and Ai is the absorbance spectrum of each individual peptide measured separately. 

 

 Moreover, at a 1:1 combination, AβpE3-42 reverses fibrillization evidenced by the 

reduction of the 13CAβ1-42 β-sheet signal at 1595 cm-1 (fig. 6 b green line). The sample 

exposed to environmental humidity for twenty minutes (fig. 6 b blue line) shows strong 

absorption near 1658 cm-1, corresponding to the α-helical component of AβpE3-42 with some 

contribution from the turn components of the unmodified peptide. Most importantly, there is 

no α-helix to β-sheet conversion of the Aβ1-42 when combined with AβpE3-42 at equimolar 

concentrations, as shown by similar signal intensity at 1617 cm-1 after 10 and 20 minutes of 

incubation.  

 In fact, β-sheet present at 10 minutes is reversed. Our data imply that at 10% AβpE3-42 

the fibrillization process is slowed down. When AβpE3-42 and 13CAβ1-42 are incubated at equal 

ratios the fibrillization process is completely inhibited, and reversible, while α-helical 

structure is promoted.   
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Figure 6. FTIR spectra of humidified Aβ at a 9:1 (13C-Aβ1-42/AβpE3-42) (A) and  1:1 (13C-Aβ1-

42/AβpE3-42) (B) combinations. Red and blue lines are experimental spectra of desiccated HFIP 
samples followed by exposure to atmosphere for 10 and 20 minutes, respectively. The green 
spectrum is the weighted sum of the spectra of each combination measured individually, 
exposed to the atmosphere for 15 minutes.  

 

  Additionally, strong intermolecular interaction between the peptides is shown by a 

frequency shift of the β-sheet component of 13C-Aβ1-42 from 1588 to 1592 cm-1 for the 9:1 

combination and to 1595 cm-1 for the 1:1 combination. These data suggest that AβpE3-42 might 

shift aggregation pathway to the formation of partial α-helical intermediates by direct 

intermolecular interactions with the unmodified peptide. Continuing from this interesting 

finding, we attempted to determine the structural effect of humidification of the AβpE3-42/13C-

Aβ1-42 combination with  D2O vapor. By exposing a 1:1 Aβ combination we are able to probe 

gradual structural changes that happen in an undetectable time frame when bulk buffer is 

added to dried samples. To achieve this we used a nitrogen tank that blew nitrogen gas 

through four Erlenmeyer flasks that contained D2O heated to a moderately simmering 

temperature followed by delivery of the D2O-saturated gas to the infrared spectrometer 

containing the peptide samples. 
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 While D2O traveled through the instrument chamber FTIR spectra were taken every 

10 minutes.  Thereafter, the sample was left in the instrument chamber without 

humidification for 24 hours. Finally, the CaF2 window containing the sample was left 

exposed to environmental humidity for 3 days. The initial absorption spectra corresponding 

to the desiccated sample with no humidity exposure shows prominent α-helical structure of 

both 13C-Aβ1-42  and AβpE3-42  (fig. 7 black line). This is evidenced by the prominent peak 

near 1657 cm-1 for AβpE3-42  and at 1617 for  13C-Aβ1-42.  Even under desiccated conditions 

there is some β-sheet component, showed by a small shoulder at 1598 cm-1.Exposure to 

humidification by D2O initiates β-sheet formation of the 13C-Aβ1-42 as evidenced by an 

increase in the 1598 cm-1 peak with a decrease in the 1617 cm-1. The AβpE3-42 α-helical 

component decreases while absorbance increases near 1628 cm-1, corresponding to β-sheet 

formation. Strikingly, after humidity was removed from instrument sample chamber and 

purged dry air for 24 hours there was an increase in native β-sheet secondary structure of 

AβpE3-42.  This is evidenced by an increase in intensity of the component at 1639 cm-1 (fig. 7 

blue line). After 3 days of environmental exposure this component approaches a more 

unordered structure by increasing to 1646 cm-1. This data show that the AβpE3-42 has very 

dynamic structural transitions when exposed to varying amounts of humidity. 
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Figure 7. 13C-Aβ1-42 and AβpE3-42 combined at a 1:1 molar ratio desiccated from HFIP (black 
line) and exposed to D2O-saturated nitrogen gas while spectra were taken every 10 minutes 
(decreasing red line darkness). Sample was left in the instrument chamber while purging with 
dry air for 1 day (blue line). Subsequently, sample was exposed to environmental humidity 
for 3 days (light blue line). Total peptide concentration was 50 µM. 

 

 These experiments were conducted with peptides from 50 µM stocks, while samples 

from figure 6 were from 200 µM stocks. Our data show that humidity, Aβ mixture ratio and 

initial stock concentrations could affect peptide behavior and oligomerization pathways, by 

modifying secondary structure. 
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Figure 8. FTIR spectra of 50 µM Aβ1-42 in 50 mM NaCl + 50 mM Na,K-phosphate (pD 7.2) 
(A) and at 10 mM Na,K phosphate (pD 7.2) (B), and AβpE3-42 in 50 mM NaCl + 50 mM 
Na,K-phosphate (pD 7.2) (C) and 10 mM Na,K-phosphate (pD 7.2) (D).  

 

  Previous experiments report that Aβ1-42 aggregates more readily than AβpE3-42.31 

Others report that AβpE3-42 fibrillizes faster.11 This led us to investigate the secondary 

structure of different Aβ peptides and their combinations under both high and low ionic 

strengths, to determine if variations in fibrillization pathways were caused by initial 

secondary structure differences. Additionally, oligomeric structure of Aβ peptide mixtures 

could lead to advancements in rational drug design, aiming at prevention and treatment of 

AD.  

 

 

 



28 
 

  To determine if the initial secondary structure have unique characteristics we have 

employed FTIR on both Aβ1-42 and AβpE3-42 as shown in figure 8.  Ionic strength plays an 

important role on fibrillization kinetics and both low and high salt conditions were probed in 

these studies. At both salt concentrations Aβ1-42 displays a prominent β-sheet component, 

evidenced by a strong absorption band at ~ 1628 cm-1 (fig. 8 a,b). Interestingly, close to 

physiological salt concentrations (fig. 8 a) Aβ1-42 shows a higher turn to sheet ratio when 

compared to low ionic strength (fig. 8 b), evidenced by a more intense turn component at 

~1671  cm-1.  

 In Both high and low salt concentrations, AβpΕ3−42   shows prominent β-sheet 

signature and a turn component, shown by a strong absorption peak at ~1628 cm-1,  and a 

weaker component at 1671cm-1 (fig. 8 c,d), respectively. Salt concentrations have no effect 

on tertiary structure and compactness of either peptide in aqueous environments as shown by 

constant amide II intensities at ~1540 cm-1. In both cases Aβ1-42 shows a strong Amide II 

band, pointing at a compact tertiary structure. Conversely, AβpE3-42 shows a more solvent 

accessible tertiary structure shown by a lack of absorption in the Amide II region. 

Interestingly, ionic strength has a significant effect on Aβ1−42  secondary structure which 

helps give molecular insight into differences seen in fibrillization rate and final 

aggregate/fibril morphology. Differences in secondary and tertiary structure help explain 

varying rates of fibrillization and varied fibril morphology observed by TEM and AFM (see 

below).  
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 Similar experiments were conducted on the 9:1 Aβ1-42/AβpE3-42 (13C-Aβ1-42/AβpE3-42)   

and 1:1 combinations. By employing Isotope labeled FTIR distinct structural features of each 

peptide were obtained.  At a 9:1 at both low and high salt concentrations the peptide mixture 

shows strong intermolecular β-sheet evidenced by absorbance at 1590 cm-1 (fig. 9 a,b). This 

peak corresponds to vibrational modes between 13C-Aβ1-42 and AβpE3-42. The component at ~ 

1638 cm-1 is more prominent under high ionic strength conditions and probably belongs to 

the β-sheet component of AβpE3-42. This component represents ~44% of the height of the 

component at ~1590 cm-1 for high salt concentrations and ~32% for low ionic strength 

conditions. These data suggest that higher ionic strength better promotes β-sheet of the 

pyroglutamated form.  

 At equimolar peptide concentrations there are prominent β-sheets peaks at ~1633 cm-1 

for the pyroglutamylated peptide and at ~1596 cm-1 for the hybrid β-sheets. The higher 

frequency for the component under 1600 cm-1 indicates strong 12C-13C vibrational coupling. 

This indicates a larger interaction and hybridization between both labeled and unlabeled 

peptides.  

 Interestingly, variations in salt concentrations affected the tertiary structure of both 

samples. At a 9:1 ratio there is a less compact tertiary structure under low ionic strength as 

shown by the amide II band at ~1540 cm-1 (fig. 9 b). While at a 1:1 ratio lower salt retains 

higher amide II signal and thus shows a more compact and less solvent accessible structure. 



30 
 

    

Figure 9. FTIR spectra of 9:1 50 µM (13C-Aβ1-42/AβpE3-42) in 50 mM NaCl + 50 mM Na,K 
phosphate (pD 7.2) (A) and at 10 mM Na,K phosphate buffers (pD 7.2) (B), and 1:1 (13C-
Aβ1-42/AβpE3-42) 50 mM NaCl + 50 mM Na,K-phosphate (pD 7.2) (C) and at 10 mM Na,K-
phosphate buffers (pD 7.2) (D). 

  

 We were also interested in how AβpE3-42 affects Aβ1-42 peptide fibrillization kinetics. 

Specifically, the role that ionic strength plays in Aβ mixture fibrillization. For this purpose 

we incubated peptide samples with ThT which has been shown to fluoresce in the visible 

range when associated to amyloid fibrils.93 Experiments were performed at 37°C while gently 

stirring. Additionally, two different salt concentrations were used to determine the effect of 

ionic strength on peptide fibrillization kinetics. Experiments were done in aqueous buffer 

containing 10 mM phosphate at pH 7.2 and at 50 mM Na,K-phosphate and 50 mM NaCl at 

pH 7.2.  
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 Fibrilization kinetics of Aβ1-42 under two different ionic strength conditions produced 

varying results. This suggests a determining role played by salt in Aβ interactions. A double 

exponential curve fit was used to determine the nucleation and elongation events of Aβ1-42 

(fig 10. black lines). In 10 mM phosphate buffer at pH 7.2 the time constants are τ0 = 21 

hours and τ1 = 2.27 hours. The nucleation event is described by  τ0, which in turn, 

corresponds to a slower rate compared to τ1. The formation of the nucleus is thought to be 

formed after several thermodynamically unfavorable steps and thus is the slow step in the 

fibrillization process.  

 

Figure 10. ThT fluorescence of Aβ 1-42 in 50 mM Na,K phosphate + 50 mM NaCl (red 
circles) and in 10 mM Na,K phosphate (blue triangles) buffers at pH 7.2 and at 37oC. Black 
lines are double exponential curve fittings of data points.  

 

 In  high ionic strength conditions ThT signal reaches a maximum at ~ 2.3 hours. The 

respective time constants are τ0 =  3.13 hours and  τ1 = 0.63 hours. Under high ionic strength 

conditions both nucleation and elongation time constants are lower than when there is less 

salt. This suggests that Aβ1-42 forms antiparallel β-sheets which are destabilized by higher 

ionic strength. There is also a significant difference in maximum intensity of ThT 

fluorescence. At higher salt concentrations there could be less fibrils. This notion can be 
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related to the low rate constants when compared to lower ionic strength.  Molecular dynamics 

simulations have suggested that ThT binds to fibril side channels.95, 118 Others have identified 

at least two binding modes for ThT on amyloid fibrils.119 This implies that subtle differences 

in binding mode  could be related to aggregate secondary structure and can cause variability 

in ThT signal intensity. 

 

Figure 11. ThT fluorescence of AβpE3-42  in  50 Na,K mM phosphate and 50 mM NaCl (red 
circles) and in 10 Na,K mM phosphate (blue triangles) buffers at pH 7.2 and 37oC.  

  

 Fibrillization kinetic experiments of AβpE3-42 are shown in (fig. 11). In this case higher 

ionic strength yields a higher ThT signal. This suggests that contrary to the unmodified 

peptide, AβpE3-42 probably forms in register parallel β-sheets, which are stabilized by the 

salt’s screening effect. Higher salt concentration screens the aligned residues with the same 

charge and thus stabilizes the secondary structure.   
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Figure 12. ThT fluorescence of the 1:1 combination in 50 mM Na,K phosphate and 50 mM 
NaCl (red circles) and in 10 mM phosphate (blue triangles) buffers at pH 7.2 and 37oC.  

 

At equimolar concentrations, low ionic strength conditions promote fibrillization when 

compared to high salt concentrations (Fig. 12).  Even though lower salt conditions promote 

faster kinetics the maximum signal is at ~12.5 hours for both conditions. Interestingly, at 

higher ionic strength there is a decrease in ThT fluorescence while the sample in low salt 

shows no decreasing trend. 
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Figure 13. ThT fluorescence of the 9:1 combination in 50 mM Na,K phosphate + 50 mM 
NaCl (red circles) and in 10 mM phosphate (blue triangles) buffers at pH 7.2.  

 

 At a 9:1 Aβ1-42/AβpE3-42 (Fig. 13) combination there is no decrease in the ThT 

intensity as observed for Aβ1-42 (Fig. 10). Importantly, high ionic strength conditions result in 

higher ThT signal, as is the case for AβpE3-42. The amount of the pyroglutamylated species is 

10% of the total peptide, indicating that this behavior cannot be ascribed to an overwhelming 

AβpE3-42 concentration. This data show the prion like effect that AβpE3-42 has on Aβ 

aggregation. At low salt conditions, ThT fluorescence remains stagnant from ~7 to ~17 hours. 

Possible explanations for this are two-fold. First, the rates of fibril extension and shrinkage 

are the same, thus resulting in a zero net effect. Second, fibrils remain in a stagnant state 

where elongation does not occur. 

 The fibril shrinkage suggested by ThT assay seen in the 1:1 combination and in the 

AβpE3-42 ,  has been monitored by other groups.28, 120 The decrease in ThT signal after reaching 

a maximum has been suggested to be caused by the aggregation of additional protein on 

labeled sites and thus blocking the ThT molecule. This theory is inadequate and poorly 

explains the observed effect. If this was the case then an explanation of why this only 
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happens in some cases is required. Other have suggested that the elongated fibrils precipitate 

and escape the window being measured.120 This also lacks an explanation on why this would 

only happen occasionally.  There have been reports of fibril disassembly when there is a lack 

of monomers.28 These experiments showed that fibrils elongation and shrinkage are directly 

and inversely related to free monomer concentration, respectively. The constant ThT signal 

observed in the 9:1 and Aβ1-42 samples have been previously described by following 

fibrillization with AFM.121 Elongation occurs in small bursts when the fibril end is unblocked 

and stops when it is  blocked; fibrils grow on both ends but at different rates.121 

 

 
 

Figure 14. TEM images of Aβ1-42 (a, e, i, m), AβpE3-42 (b, f, j, n), AβpE3-42/Aβ1-42 = 1:9 (c, g, k, 
o), and AβpE3-42/Aβ1-42 = 1:1 (d, h, l, p) incubated in aqueous buffer of 50 mM NaCl and 50 
mM Na,K-phosphate (pH 7.2) for 2 h (a-d), 4 h (e-h), 12 h (i-l), and 24 h (m-p) at 37oC with 
constant stirring. The horizontal bar in each panel equals 100 nm. 
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 A high degree of variation in fibrillization kinetics and ThT fluorescent intensities 

suggest different fibril morphologies. To study the morphology of Aβ fibrils and aggregates, 

we employed TEM and AFM. TEM  measurements taken at 2,4,12  and 24 hours of 

incubation show that Aβ peptides, their 9:1 and 1:1 molar combinations fibrillize under 50 

mM phosphate and 50 mM NaCl at pH 7.2 (fig. 14). At 2 hours of incubation fibrils are 

observed for Aβ1-42 while AβpE 3-42 forms small non-fibrillar aggregates (fig. 14 a,b). 

Meanwhile, the 9:1 and 1:1 molar combinations show fibrillar structures as early as 2 hours 

(fig. 14 c,d). After four hours of incubation all samples show fibrils (fig.14 e-h). 

Additionally, At 24 hours all samples show dense entangled fibrils (fig. 14 m-p). 

Interestingly, AβpE3-42 shows bundled fibrils.    

 

Figure 15. AFM images of Aβ1-42 (A), AβpE3-42 (B), Aβ1-42/AβpE3-42  (9:1) (C), and  1:1 (D)  
combinations, incubated in aqueous buffer of 50 mM NaCl and 50 mM Na,K phosphate  (pH 
7.2) at  37oC with constant stirring. Black lines correspond to 200 nm. Red lines show second 
nucleation sites. 

 

 Further morphological studies were performed by employing AFM on Aβ peptide 

samples that were incubated for 24 hours. Fibril preparation was done using the same 

procedure as for the TEM experiments (see above). In agreement with TEM images, AFM 

images show that Aβ1−42 forms denser aggregates while AβpE3-42 shows more flexible and 

polymorphic fibrillar structures (fig. 15 a,b). Both peptides by themselves show fibrillar 

structures which have an average diameter of approximately 45 nm. When combined at a 9:1 

B A C D 
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ratio the average diameter decreases to approximately 38 nm (Fig. 15 c) Fibrils prepared 

from equimolar concentrations show an increase in size to approximately 55 nm when 

compared to the peptides by themselves.  

  Second nucleation sites are defined as extending fibrils branching out of previously 

formed fibrils and have been recently described.102 Our peptides samples show several 

second nucleation sites and examples have been labeled with red arrows. Also, fibrils extend 

from nucleation sites, which are globular aggregates present in all of the samples. As shown 

by TEM and AFM, pyroglutamated Aβ shows unique fibrillar features and also has a 

significant effect on unmodified Aβ aggregate formation. 

  Our results give mechanistic insight into previously established postulates. In mixture 

Aβ1-42 and AβpE3-42 show strong intermolecular interactions in buffer conditions. At 

equimolar concentrations AβpE3-42 has increased turn component when compared to AβpE3-42 

by itself. Varying salt concentrations affect Aβ1-42 secondary structure. At increased salt 

concentrations the turn to sheet ratio is increased. Additionally, the tertiary structure of a 1:1 

combination is salt dependent. High salt promotes an open tertiary structure, while low salt 

promotes a tight, compact structure.  

  Differences in secondary and tertiary structure shed light on disagreements seen in 

previous published fibrillization data. Low salt conditions promote Aβ1-42 fibrillization while 

inhibiting fibrillization of AβpE3-42. Importantly, at 10% AβpE3-42, the fibrillization trend 

follows that of the pyroglutamylated peptide by itself. This cannot be accredited to a majority 

of AβpE3-42 content. Our data suggest that AβpE3-42 is able to transmit structural features to 

Aβ1-42. Subsequently, Aβ1-42 is able to infect other unmodified Aβ.  
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CHAPTER FIVE: CONCLUSIONS 
 

  Our work aimed at the elucidation of the effect of AβpE3-42 on Aβ1-42 structure, 

fibrillization kinetics and final fibril morphology. It has been previously established that Aβ 

peptides are mostly α-helical in fluorinated alcohols such as HFIP. Interestingly, our data 

show that retention of the helical conformation following desiccation is dependent on total 

peptide concentration and humidity content. At 200 µM Aβ1-42 and AβpE3-42 show a prominent 

β-sheet component when dried. Conversely, at 50 µM Aβ1-42, AβpE3-42, their 9:1 and 1:1 

combinations show mostly α-helical structure after desiccation. These results carry an 

important implication. Many experiments that follow aggregation behavior claim a seedless 

and nucleus free starting point. Nevertheless, this may not be the case even when using 

methods that have been shown to break aggregates and promote monomeric form. For such 

experiments care should be taken and rigorous verification should be employed. 

 Our data suggest that initial concentrations of stocks might affect peptide structure in 

experiments and thus result in incongruences. This is especially important since oligomeric 

species and fibrils have been shown to be capable of forming through different pathways; 

presence of oligomer does not imply mandatory fibril formation.122  

 Addition of bulk D2O buffer promotes β-sheet structure in both AβpE3-42 and Aβ1-42. 

The increased presence of α-helical structure in AβpE3-42 suggests that this species does not 

fibrillize from the same starting point as Aβ1-42. Additionally, it helps explain the significant 

difference in toxicity when compared to Aβ1-42. 

  



39 
 

 Isotope edited FTIR permitted us to identify strong interactions between the peptides. 

Our data also show that mixed peptides samples in buffer show different secondary structures 

when compared to their algebraic combination.  When combined at equimolar concentrations 

the turn to sheet ratio decreases significantly for AβpE3-42. 

  Our FTIR data show that the transition to β-sheet after buffer addition occurs in an 

undetectable amount of time. Interest in the transitional states following interaction of 

monomers has increased since focus on soluble oligomeric species was established. To 

determine intermediate structures between the dried state and aqueous of AD relevant Aβ 

mixtures, we exposed the 9:1 and 1:1 combinations to nominal environmental humidity. The 

addition of nominal environmental moisture is sufficient to induce gradual conformational 

changes on Aβ peptides. AβpE3-42   at 10% total peptide concentration causes an inhibition 

of β-sheet formation by the Aβ1-42. Strikingly, At equimolar concentrations the 

pyroglutamylated peptide was able to reverse cross β-sheet formation. Our data show for the 

first time a detailed prion effect of AβpE3-42 on Aβ1-42  secondary structure. This has given 

some structural insight into previous reports that show for example, that  at  low AβpE3-42  %, 

Aβ mixtures are most toxic. Few examples exist of proteins that have been shown to be  

structurally affected by humidity.123  This implies that careful preparation in controlled 

environments is essential for Aβ samples before experiments This potentially applies to other 

fibril forming peptides such as α-synuclein causatively linked to Parkinson’s disease.124 
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 Addition of D2O saturated nitrogen gas showed dynamic changes of Aβ peptides at a 

1:1 combination. Initially, both peptides show prominent α-helical conformation; Aβ1-42 

transitions to β-sheet upon hydration. Interestingly, hydration promotes a strong turn region 

belonging to the pyrogltamylated peptide. Upon removal of windows from sample chamber, 

AβpE3-42 transitions from a β-sheet to a more unordered/helical state. Our data show that a 

higher degree of hydration does not imply a linear trend from α-helical to β-sheet as was 

hypothesized.   

 By CD we determined that upon addition of bulk aqueous buffer all samples undergo 

a structural transition towards β-sheet structures, albeit not with the same intensity. The 9:1 

combination and Aβ1-42 showed strong β-sheet signal while AβpE3-42 and the 1:1 combination 

showed a weaker signal. This corresponds to higher degree of β-sheets as intensity increases.  

 Fibrillization studies by ThT fluorescence show that ionic strength plays a 

determining role on peptide aggregation. Aβ1-42 shows higher ThT signal at lower salt 

concentrations. Conversely, AβpE3-42 has increased fibrillization at higher salt concentrations. 

These data suggest that in the case for AβpE3-42 , the peptide forms parallel β-sheets, where the 

salt helps screen like charges of  interacting residues. Interestingly, at a 9:1 combination the 

trend followed is similar to the AβpE3-42. At equimolar ratio the trend followed corresponds to 

the Aβ1-42 peptide. This shows that the effect of AβpE3-42 on Aβ1-42 does not follow 

superposition principles. The effect of salt and Aβ ratio led us to hypothesize that significant 

secondary structure differences exist in Aβ fibril seeds. As determined by FTIR at high ionic 

strength Aβ1-42 shows increased turn to sheet ratio, when compared to low salt conditions.  

Most notably, at high ionic strength, AβpE3-42 shows helical components not significantly 

present at low salt. These data show that AβpE3-42 is able to produce positive ThT signal while 
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not being in pure cross β-sheet structure. Thus expanding structural conformations ThT can 

bind to.  

 When combined at 9:1 our data show a larger turn to sheet ratio than at lower salt. 

Interestingly, higher turn to sheet ratio is not sufficient to promote ThT signal. Since Aβ1-42 

fibrillizes more readily at lower ionic strength where less turn component is present.  Further 

structural studies are necessary to determine spatial resolution of Aβ peptides and determine 

underlying factors that affect Aβ secondary structure and aggregation.  

  By employing TEM we identified distinct fibrillization pathways. At 2 hours of 

incubation Aβ1-42 shows fibril formation while AβpE3-42 shows small irregular shaped 

aggregates. The 9:1 and 1:1 combinations contain pre-fibrillar structures. After 24 hours all 

samples show fibrillar aggregates. Our data show that distinct fibrillization pathways are 

followed by Aβ and their combinations. These data help shed light on possible toxic species. 

For example, low molar content of AβpE3-42 has been shown to be hypertoxic to cultured 

neurons. Additionally, oligomers and not fibrils are currently thought to be most toxic. Our 

TEM data for the 9:1 combination show lack of mature fibrils after 4 hours of incubation. 

These data suggest that small oligomers cause neuronal death and that possibly fibrils act as a 

rescue mechanism and are not the main toxic entities. 

 AFM data further elucidated fibril morphology. At a 1:1 combination the fibrils have 

fibril morphology that is intermediate between Aβ1-42 and AβpE3-42. Nucleation and second 

nucleation sites can be observed, giving indication of fibril initial elongation sites and 

branching sites. Our data show that AβpE3-42 affects Aβ1-42  at a molecular and ultrastructural  

level. 
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 Non fibrillar oligomeric species are thought to be the toxic entities in AD.  Strikingly, 

our studies confirm that not only does ionic strength affect Aβ secondary structure but also 

fibril stability. At equimolar concentrations, physiologically relevant ionic strength  ThT 

studies, show that fibrils disassemble before 24 hours of incubation, while ThT fluorescence 

does not decrease at low salt. Further toxicity studies are needed to determine if this loss in 

fibrillar structure has a positive correlation with increased “pathological conformations” in 

AD.  
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