You are here

Immuno-PCR detection of Lyme borreliosis

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
Lyme borreliosis, more commonly referred to as Lyme disease, is the fastest growing zoonotic disease in North America with approximately 30,000 confirmed cases and 300,000 estimated infections per year. In nature, the causative agent of Lyme disease, the bacterium Borrelia burgdorferi, cycles between Ixodes sp. ticks and small mammals. Humans become infected with Lyme disease after being bitten by an infected tick. The primary indicator of a Borrelia burgdorferi infection is a bull's eye rash typically followed by flu-like symptoms with treatment consisting of a 2-4 week course of antibiotics. If not treated, later stages of the disease can result in arthritis, cardiovascular and neurological symptoms. Diagnosis of Lyme disease is challenging and currently requires a complex laboratory diagnostic using indirect detection of host-generated antibodies by a two-tiered approach consisting of an enzyme linked immunosorbent assay (ELISA) followed by IgM and IgG immunoblots. Although two-tier testing has provided an adequate approach for Lyme disease diagnosis, it has weaknesses including subjective analysis, complex protocols and lack of reagent standardization. Immuno-PCR (iPCR) is a method that combines ELISA-based detection specificity with the sensitivity of PCR signal amplification and has demonstrated increased sensitivity for many applications such as detection of disease biomarkers but has yet to be applied for diagnosis of Lyme disease.Herein, using iPCR and recombinant B. burgdorferi antigens, an assay for both the direct and the indirect detection of Lyme disease was developed and demonstrated improved sensitivity for detection of B. burgdorferi antibodies using a murine model. Moreover, we present evidence using human Lyme disease patient serum samples that iPCR using both multiple antigens and a unique single hybrid antigen is capable of achieving increased sensitivity and specificity compared to existing methodology. These data represent the first demonstration of iPCR for Lyme disease diagnosis and support the replacement of two-tier testing with a more simplified and objective approach.
Title: Immuno-PCR detection of Lyme borreliosis.
36 views
12 downloads
Name(s): Halpern, Micah, Author
Ballantyne, John, Committee Chair
Cunningham, Glenn, Committee Member
Fookes, Barry, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Lyme borreliosis, more commonly referred to as Lyme disease, is the fastest growing zoonotic disease in North America with approximately 30,000 confirmed cases and 300,000 estimated infections per year. In nature, the causative agent of Lyme disease, the bacterium Borrelia burgdorferi, cycles between Ixodes sp. ticks and small mammals. Humans become infected with Lyme disease after being bitten by an infected tick. The primary indicator of a Borrelia burgdorferi infection is a bull's eye rash typically followed by flu-like symptoms with treatment consisting of a 2-4 week course of antibiotics. If not treated, later stages of the disease can result in arthritis, cardiovascular and neurological symptoms. Diagnosis of Lyme disease is challenging and currently requires a complex laboratory diagnostic using indirect detection of host-generated antibodies by a two-tiered approach consisting of an enzyme linked immunosorbent assay (ELISA) followed by IgM and IgG immunoblots. Although two-tier testing has provided an adequate approach for Lyme disease diagnosis, it has weaknesses including subjective analysis, complex protocols and lack of reagent standardization. Immuno-PCR (iPCR) is a method that combines ELISA-based detection specificity with the sensitivity of PCR signal amplification and has demonstrated increased sensitivity for many applications such as detection of disease biomarkers but has yet to be applied for diagnosis of Lyme disease.Herein, using iPCR and recombinant B. burgdorferi antigens, an assay for both the direct and the indirect detection of Lyme disease was developed and demonstrated improved sensitivity for detection of B. burgdorferi antibodies using a murine model. Moreover, we present evidence using human Lyme disease patient serum samples that iPCR using both multiple antigens and a unique single hybrid antigen is capable of achieving increased sensitivity and specificity compared to existing methodology. These data represent the first demonstration of iPCR for Lyme disease diagnosis and support the replacement of two-tier testing with a more simplified and objective approach.
Identifier: CFE0005346 (IID), ucf:50470 (fedora)
Note(s): 2013-12-01
Ph.D.
Medicine, Molecular Biology and Microbiology
Doctoral
This record was generated from author submitted information.
Subject(s): Lyme disease -- Borrelia burgdorferi -- Immuno-PCR -- diagnostic -- sensitivity -- specificity
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005346
Restrictions on Access: campus 2019-06-15
Host Institution: UCF

In Collections