You are here

High resolution time-resolved imaging system in the vacuum ultraviolet region

Download pdf | Full Screen View

Date Issued:
2014
Abstract/Description:
High-power debris-free vacuum ultraviolet (VUV) light sources have applications in several scientific and engineering areas, such as high volume manufacturing lithography and inspection tools in the semiconductor industry, as well as other applications in material processing and photochemistry.For the past decades, the semiconductor industry has been driven by what is called "Moore's Law". The entire semiconductor industry relies on this rule, which requires chip makers to pack transistors more tightly with every new generation of chips, shrinking the size of transistors. The ability to solve roadmap challenges is, at least partly, proportional to our ability to measure them. The focus of this thesis is on imaging transient VUV laser plasma sources with specialized reflective imaging optics for metrology applications. The plasma dynamics in novel laser-based Zinc and Tin plasma sources will be discussed. The Schwarzschild optical system was installed to investigate the time evolution of the plasma size in the VUV region at wavelengths of 172 nm and 194 nm. The outcomes are valuable for interpreting the dynamics of low-temperature plasma and to optimize laser-based VUV light sources.
Title: High resolution time-resolved imaging system in the vacuum ultraviolet region.
32 views
16 downloads
Name(s): Jang, Yuseong, Author
Richardson, Martin, Committee Chair
Moharam, Jim, Committee Member
Likamwa, Patrick, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2014
Publisher: University of Central Florida
Language(s): English
Abstract/Description: High-power debris-free vacuum ultraviolet (VUV) light sources have applications in several scientific and engineering areas, such as high volume manufacturing lithography and inspection tools in the semiconductor industry, as well as other applications in material processing and photochemistry.For the past decades, the semiconductor industry has been driven by what is called "Moore's Law". The entire semiconductor industry relies on this rule, which requires chip makers to pack transistors more tightly with every new generation of chips, shrinking the size of transistors. The ability to solve roadmap challenges is, at least partly, proportional to our ability to measure them. The focus of this thesis is on imaging transient VUV laser plasma sources with specialized reflective imaging optics for metrology applications. The plasma dynamics in novel laser-based Zinc and Tin plasma sources will be discussed. The Schwarzschild optical system was installed to investigate the time evolution of the plasma size in the VUV region at wavelengths of 172 nm and 194 nm. The outcomes are valuable for interpreting the dynamics of low-temperature plasma and to optimize laser-based VUV light sources.
Identifier: CFE0005352 (IID), ucf:50492 (fedora)
Note(s): 2014-08-01
M.S.
Optics and Photonics, Optics and Photonics
Masters
This record was generated from author submitted information.
Subject(s): Imaging system -- VUV -- plasma
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005352
Restrictions on Access: public 2014-08-15
Host Institution: UCF

In Collections