You are here

The Study of Photo-reduction of Cerium Oxide Nanoparticles in Presence of Dextran: An Attempt in Understanding the Functionality of the System

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
Malignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our preliminary work, we have shown that Dextran (1000Da) coated Cerium oxide nanoparticles (Dex-CNPs) selectively kills the cancer cells (50% killing at a concentration of 150?M) without inducing toxicity to the normal cells. However, the mechanism involved on how CNPs/Dex-CNPs attain the selectivity and efficiently kill the tumor cells is still unknown. In this study we have synthesized Dextran coated ceria nano particles (Dex- CNPs) with different surface oxidation state ratio (Ce4+/Ce3+). This will provide an in depth understanding of the key chemical and physical properties of the system that can improve its efficacy. The varied surface oxidation of the particles is achieved by exposing Dex-CNPs to light which initiates a color change from dark to pale yellow indicating the reduction of Ce4+ to Ce3+. Interestingly we have found that the Dex-CNPs exposed to light have reduced cytotoxicity towards squamous cell carcinoma cell line (CCL30) compared to the protected once. Characterization of the same revealed that Dex- CNPs exposed to light have decreased Ce4+ /Ce3+ surface oxidation ratio compared to the other. This provides more insight in useful synthesis of Dex-CNPs in terms of storage and handling. In summary, higher Ce4+ /Ce3+ surface oxidation ratio is more efficient in hindering tumor growth by effectively hindering the tumor-stoma interaction.
Title: The Study of Photo-reduction of Cerium Oxide Nanoparticles in Presence of Dextran: An Attempt in Understanding the Functionality of the System.
47 views
15 downloads
Name(s): Barkam, Swetha, Author
Seal, Sudipta, Committee Chair
Heinrich, Helge, Committee Member
Gaume, Romain, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Malignant melanoma cancer is the sixth common cancer diagnosed in the United States. Surgery, chemotherapy and radiation are some of the successful techniques in killing tumor cells. However, in these techniques, it is not easy to distinguish tumor cells from the healthy once which inadvertently get exposed to chemical agent/radiation. Therefore it is required to develop an anti-cancer agent which selectively kills the cancer cells, while still protecting the normal tissues. In our preliminary work, we have shown that Dextran (1000Da) coated Cerium oxide nanoparticles (Dex-CNPs) selectively kills the cancer cells (50% killing at a concentration of 150?M) without inducing toxicity to the normal cells. However, the mechanism involved on how CNPs/Dex-CNPs attain the selectivity and efficiently kill the tumor cells is still unknown. In this study we have synthesized Dextran coated ceria nano particles (Dex- CNPs) with different surface oxidation state ratio (Ce4+/Ce3+). This will provide an in depth understanding of the key chemical and physical properties of the system that can improve its efficacy. The varied surface oxidation of the particles is achieved by exposing Dex-CNPs to light which initiates a color change from dark to pale yellow indicating the reduction of Ce4+ to Ce3+. Interestingly we have found that the Dex-CNPs exposed to light have reduced cytotoxicity towards squamous cell carcinoma cell line (CCL30) compared to the protected once. Characterization of the same revealed that Dex- CNPs exposed to light have decreased Ce4+ /Ce3+ surface oxidation ratio compared to the other. This provides more insight in useful synthesis of Dex-CNPs in terms of storage and handling. In summary, higher Ce4+ /Ce3+ surface oxidation ratio is more efficient in hindering tumor growth by effectively hindering the tumor-stoma interaction.
Identifier: CFE0005301 (IID), ucf:50508 (fedora)
Note(s): 2013-12-01
M.S.M.S.E.
Engineering and Computer Science, Materials Science Engineering
Masters
This record was generated from author submitted information.
Subject(s): dextran -- cerium oxide nanoparticles -- photo-reduction -- surface chemistry
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005301
Restrictions on Access: campus 2015-06-15
Host Institution: UCF

In Collections