You are here

Three-phase contact line phenomena in droplets on solid and liquid surfaces: electrocapillary, pinning, wetting line velocity effect, and free liquid surface deformation

Download pdf | Full Screen View

Date Issued:
2013
Abstract/Description:
In this dissertation, physical phenomena relevant to (i) an interface formed between two fluids and a solid phase (wettingline) and (ii) an interface between three fluids (triple contact line) were investigated. In the former case, the wetting line (WL)phenomena, which encompass the wetting line energy (WLE), the wetting line velocity (WLV), and the contact anglehysteresis, were studied using a micropump based on electrowetting on dielectric (EWOD). In the latter case, the air filmlubrication effect and the liquid free surface deformation were taken into account to explain the dual equilibrium states ofwater droplets on liquid free surfaces. A micropump based on droplet/meniscus pressure gradient generated by EWOD was designed and fabricated. By alteringthe contact angle between liquid and solid using an electric field a pressure gradient was induced and a small droplet waspumped into the channel. The flow rate in the channel was found to be constant in spite of the changes in the droplet'sradius. The WL phenomena were studied to unravel the physical concept behind the micropump constant flow rate. Theobservation and measurement reveal that the shrinking input droplet changes its shape in two modes in time sequence: (i)its contact angle decreases, while its wetting area remains constant, and (ii) its WL starts to move while its contact anglechanges. Contact angles were measured for the advancing and receding WLs at different velocities to capture a full pictureof contact angle behavior. The effects of the WLE on the static contact angle and the WLV on the dynamic contact angle inthe pump operation were investigated. Also the effect of EWOD voltage on the magnitude and uniformity of the micropumpflow rate was studied. Dynamic contact angles were used to accurately calculate the pressure gradient between the dropletand the meniscus, and estimate the flow rate. It was shown that neglecting either of these effects not only results in aconsiderable gap between the predicted and the measured flow rates but also in an unphysical instability in the flow rateanalysis. However, when the WLE and WLV effects were fully taken into account, an excellent agreement between thepredicted and the experimental flow rates was obtained.For the study of the TCL between three fluids, aqueous droplets were formed at oil-air interface and two stableconfigurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. General solutions for energy and forceanalysis were obtained and were shown to be in good agreement with the experimental observations. Further the energybarrier obtained for transition from configuration (i) to (ii) was correlated to the droplet release height and the probability ofnon-coalescent droplet formation. Droplets formed on the solid surfaces and on the free surface of immiscible liquids have various applications indroplet-based microfluidic devices. This research provides an insight into their formation and manipulation.
Title: Three-phase contact line phenomena in droplets on solid and liquid surfaces: electrocapillary, pinning, wetting line velocity effect, and free liquid surface deformation.
32 views
18 downloads
Name(s): Shabani, Roxana, Author
Cho, Hyoung, Committee Chair
Kumar, Ranganathan, Committee Member
Kapat, Jayanta, Committee Member
Chow, Louis, Committee Member
Zhai, Lei, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2013
Publisher: University of Central Florida
Language(s): English
Abstract/Description: In this dissertation, physical phenomena relevant to (i) an interface formed between two fluids and a solid phase (wettingline) and (ii) an interface between three fluids (triple contact line) were investigated. In the former case, the wetting line (WL)phenomena, which encompass the wetting line energy (WLE), the wetting line velocity (WLV), and the contact anglehysteresis, were studied using a micropump based on electrowetting on dielectric (EWOD). In the latter case, the air filmlubrication effect and the liquid free surface deformation were taken into account to explain the dual equilibrium states ofwater droplets on liquid free surfaces. A micropump based on droplet/meniscus pressure gradient generated by EWOD was designed and fabricated. By alteringthe contact angle between liquid and solid using an electric field a pressure gradient was induced and a small droplet waspumped into the channel. The flow rate in the channel was found to be constant in spite of the changes in the droplet'sradius. The WL phenomena were studied to unravel the physical concept behind the micropump constant flow rate. Theobservation and measurement reveal that the shrinking input droplet changes its shape in two modes in time sequence: (i)its contact angle decreases, while its wetting area remains constant, and (ii) its WL starts to move while its contact anglechanges. Contact angles were measured for the advancing and receding WLs at different velocities to capture a full pictureof contact angle behavior. The effects of the WLE on the static contact angle and the WLV on the dynamic contact angle inthe pump operation were investigated. Also the effect of EWOD voltage on the magnitude and uniformity of the micropumpflow rate was studied. Dynamic contact angles were used to accurately calculate the pressure gradient between the dropletand the meniscus, and estimate the flow rate. It was shown that neglecting either of these effects not only results in aconsiderable gap between the predicted and the measured flow rates but also in an unphysical instability in the flow rateanalysis. However, when the WLE and WLV effects were fully taken into account, an excellent agreement between thepredicted and the experimental flow rates was obtained.For the study of the TCL between three fluids, aqueous droplets were formed at oil-air interface and two stableconfigurations of (i) non-coalescent droplet and (ii) cap/bead droplet were observed. General solutions for energy and forceanalysis were obtained and were shown to be in good agreement with the experimental observations. Further the energybarrier obtained for transition from configuration (i) to (ii) was correlated to the droplet release height and the probability ofnon-coalescent droplet formation. Droplets formed on the solid surfaces and on the free surface of immiscible liquids have various applications indroplet-based microfluidic devices. This research provides an insight into their formation and manipulation.
Identifier: CFE0005253 (IID), ucf:50598 (fedora)
Note(s): 2013-08-01
Ph.D.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Droplet -- Electrowetting on dielectric -- Micropump -- Hysteresis -- Dynamic contact angle -- Wetting-line velocity -- Pinning -- Advancing and receding wetting-lines -- Oils -- Phase equilibrium -- Probability -- Surface energy
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0005253
Restrictions on Access: public 2014-02-15
Host Institution: UCF

In Collections