You are here
Highly-Sensitive Stoichiometric Analysis of YAG Ceramics Using Laser-Induced Breakdown Spectroscopy (LIBS)
- Date Issued:
- 2014
- Abstract/Description:
- Transparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry, often beyond the precision of current analytical techniques, in order to reduce scattering losses and the presence of deleterious point defects. This work explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for the quantitative analysis of ceramic compositions near stoichiometry. We have designed a compact and automated LIBS system to determine the plasma composition of sintered mixtures of Y2O3-Al2O3 near the garnet composition. The performance of our setup is evaluated and compared to conventional techniques. Optimized conditions for the acquisition of plasma emission spectra are discussed and the intensity ratios of Y+ and Al in the 300 to 400nm spectral range are analyzed using simple plasma models. The results show that, for the selected parameters of our experiments, the fluctuations in plasma temperature are minimal, and the stability of the plasma is improved. Current results show that ceramic compositions can be resolved within 1 at% in oxide and several suggestions are proposed to further increase the accuracy and precision of the method.
Title: | Highly-Sensitive Stoichiometric Analysis of YAG Ceramics Using Laser-Induced Breakdown Spectroscopy (LIBS). |
36 views
16 downloads |
---|---|---|
Name(s): |
Kazemi Jahromi, Ali, Author Gaume, Romain, Committee Chair Richardson, Martin, Committee Member Seal, Sudipta, Committee Member , Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2014 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Transparent ceramics are an important class of optical materials with applications in high-strength windows, radiation detectors and high-power lasers. Despite the many successful developments of the past decades, their challenging fabrication still needs to be perfected to achieve a better consistency in optical quality. In particular, ternary phase materials such as Yttrium Aluminum Garnet (YAG, Y3Al5O12), a long standing high-power laser host, require a precise control of stoichiometry, often beyond the precision of current analytical techniques, in order to reduce scattering losses and the presence of deleterious point defects. This work explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for the quantitative analysis of ceramic compositions near stoichiometry. We have designed a compact and automated LIBS system to determine the plasma composition of sintered mixtures of Y2O3-Al2O3 near the garnet composition. The performance of our setup is evaluated and compared to conventional techniques. Optimized conditions for the acquisition of plasma emission spectra are discussed and the intensity ratios of Y+ and Al in the 300 to 400nm spectral range are analyzed using simple plasma models. The results show that, for the selected parameters of our experiments, the fluctuations in plasma temperature are minimal, and the stability of the plasma is improved. Current results show that ceramic compositions can be resolved within 1 at% in oxide and several suggestions are proposed to further increase the accuracy and precision of the method. | |
Identifier: | CFE0005191 (IID), ucf:50624 (fedora) | |
Note(s): |
2014-05-01 M.S. Optics and Photonics, Optics and Photonics Masters This record was generated from author submitted information. |
|
Subject(s): | 11/26/2013 | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0005191 | |
Restrictions on Access: | public 2014-05-15 | |
Host Institution: | UCF |