You are here

Investigation of the effect of rain on sea surface salinity

Download pdf | Full Screen View

Date Issued:
2016
Abstract/Description:
The Aquarius/SAC-D mission provided Sea Surface Salinity (SSS), globally over the ocean, for almost 4 years. As a member of the AQ/SAC-D Cal/Val team, the Central Florida Remote Sensing Laboratory has analyzed these salinity measurements in the presence of precipitation and has noted the high correlation between the spatial patterns of reduced SSS and the spatial distribution of rain. It was determined that this is the result of a cause and effect relation, and not SSS measurement errors. Thus, it is important to understand these salinity changes due to seawater dilution by rain and the associated near-surface salinity strati?cation. This research addresses the effects of rainfall on the Aquarius (AQ) SSS retrieval using a macro-scale Rain Impact Model (RIM). This model, based on the superposition of a one-dimension eddy diffusion (turbulent diffusion) model, relates SSS to depth, rainfall accumulation and time since rain. To identify instantaneous and prior rainfall accumulations, a Rain Accumulation product was developed. This product, based on the NOAA CMORPH precipitation data set, provides the rainfall history for 24 hours prior to the satellite observation time, which is integrated over each AQ IFOV. In this research results of the RIM validation are presented by comparing AQ and SMOS measured and RIM simulated SSS. The results show the high cross correlation for these comparisons and also with the corresponding SSS anomalies relative to HYCOM.
Title: Investigation of the effect of rain on sea surface salinity.
13 views
6 downloads
Name(s): Santos Garcia, Andrea, Author
Jones, W Linwood, Committee Chair
Mikhael, Wasfy, Committee Member
Wahid, Parveen, Committee Member
Junek, William, Committee Member
Asher, William, Committee Member
Wilheit, Thomas, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2016
Publisher: University of Central Florida
Language(s): English
Abstract/Description: The Aquarius/SAC-D mission provided Sea Surface Salinity (SSS), globally over the ocean, for almost 4 years. As a member of the AQ/SAC-D Cal/Val team, the Central Florida Remote Sensing Laboratory has analyzed these salinity measurements in the presence of precipitation and has noted the high correlation between the spatial patterns of reduced SSS and the spatial distribution of rain. It was determined that this is the result of a cause and effect relation, and not SSS measurement errors. Thus, it is important to understand these salinity changes due to seawater dilution by rain and the associated near-surface salinity strati?cation. This research addresses the effects of rainfall on the Aquarius (AQ) SSS retrieval using a macro-scale Rain Impact Model (RIM). This model, based on the superposition of a one-dimension eddy diffusion (turbulent diffusion) model, relates SSS to depth, rainfall accumulation and time since rain. To identify instantaneous and prior rainfall accumulations, a Rain Accumulation product was developed. This product, based on the NOAA CMORPH precipitation data set, provides the rainfall history for 24 hours prior to the satellite observation time, which is integrated over each AQ IFOV. In this research results of the RIM validation are presented by comparing AQ and SMOS measured and RIM simulated SSS. The results show the high cross correlation for these comparisons and also with the corresponding SSS anomalies relative to HYCOM.
Identifier: CFE0006175 (IID), ucf:51133 (fedora)
Note(s): 2016-05-01
Ph.D.
Engineering and Computer Science, Electrical Engineering and Computer Engineering
Doctoral
This record was generated from author submitted information.
Subject(s): Remote sensing -- salinity -- rain inmpact model -- cmorph -- aquarius -- smos -- rain accumulation
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006175
Restrictions on Access: public 2016-05-15
Host Institution: UCF

In Collections