You are here

Physical Hydrogeological Modeling of Florida's Sinkhole Hazard

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
Sinkholes are one of the major geohazards in karst terrain and pose a social, economic, and environmental risk. In Florida, sinkhole-related insurance claims between 2006 and the third quarter of 2010 amounted to $1.4 billion. Approximately 20 % of the United States is underlain by karst terrain formed from the dissolution of soluble rocks and is susceptible to a sinkhole hazard. Particularly, Texas, Florida, Tennessee, Alabama, Missouri, Kentucky, and Pennsylvania are known as sinkhole states.The scope of this study is to develop a physical model to simulate sinkholes (referred to as a sinkhole simulator), which can assess the qualitative behavior of the hydrogeological mechanism of Florida's sinkhole formations. Two sinkhole simulators were developed, with the second simulator constructed to overcoming the limitations of the first. The first generation sinkhole simulator incorporated a falling head groundwater system and the sinkhole could only be observed once the ground surface was breached. The second generation sinkhole simulator incorporated a constant head groundwater system which accurately depicts field conditions and the sinkhole was able to be observed during all stages of formation within this model. In both simulators multiple hydrogeological conditions were created and water level transducers were installed at various locations within the soil profile to monitor variations in the groundwater table during the sinkhole process, this was done to investigate the soil-groundwater behavior.Findings from this study include: 1) groundwater recharge is a critical sinkhole triggering factor, 2) the groundwater table cone of depression increases as the raveled zone or void travels up through the overburden due to sinkhole formation, 3) The cover-subsidence sinkhole failure mechanism is similar to the failure mechanism present in Terzaghi's trapdoor experiment and the cover-collapse failure mechanism consists of four district components: failure planes with erosion envelope, arch dropout failure, formation of elliptical void, and slope stability failure, and 4) a strong qualitative relationship between soil strength and type of sinkhole formed (cover-subsidence or cover-collapse) was observed.
Title: Physical Hydrogeological Modeling of Florida's Sinkhole Hazard.
40 views
18 downloads
Name(s): Perez, Adam, Author
Nam, Boo Hyun, Committee Chair
Wang, Dingbao, Committee Member
Chopra, Manoj, Committee Member
Singh, Arvind, Committee Member
An, Jin Woo, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Sinkholes are one of the major geohazards in karst terrain and pose a social, economic, and environmental risk. In Florida, sinkhole-related insurance claims between 2006 and the third quarter of 2010 amounted to $1.4 billion. Approximately 20 % of the United States is underlain by karst terrain formed from the dissolution of soluble rocks and is susceptible to a sinkhole hazard. Particularly, Texas, Florida, Tennessee, Alabama, Missouri, Kentucky, and Pennsylvania are known as sinkhole states.The scope of this study is to develop a physical model to simulate sinkholes (referred to as a sinkhole simulator), which can assess the qualitative behavior of the hydrogeological mechanism of Florida's sinkhole formations. Two sinkhole simulators were developed, with the second simulator constructed to overcoming the limitations of the first. The first generation sinkhole simulator incorporated a falling head groundwater system and the sinkhole could only be observed once the ground surface was breached. The second generation sinkhole simulator incorporated a constant head groundwater system which accurately depicts field conditions and the sinkhole was able to be observed during all stages of formation within this model. In both simulators multiple hydrogeological conditions were created and water level transducers were installed at various locations within the soil profile to monitor variations in the groundwater table during the sinkhole process, this was done to investigate the soil-groundwater behavior.Findings from this study include: 1) groundwater recharge is a critical sinkhole triggering factor, 2) the groundwater table cone of depression increases as the raveled zone or void travels up through the overburden due to sinkhole formation, 3) The cover-subsidence sinkhole failure mechanism is similar to the failure mechanism present in Terzaghi's trapdoor experiment and the cover-collapse failure mechanism consists of four district components: failure planes with erosion envelope, arch dropout failure, formation of elliptical void, and slope stability failure, and 4) a strong qualitative relationship between soil strength and type of sinkhole formed (cover-subsidence or cover-collapse) was observed.
Identifier: CFE0006637 (IID), ucf:51247 (fedora)
Note(s): 2017-05-01
M.S.C.E.
Engineering and Computer Science, Civil, Environmental and Construction Engineering
Masters
This record was generated from author submitted information.
Subject(s): sinkhole -- groundwater -- physical modeling -- hazard -- cover-collapse -- cover-subsidence
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006637
Restrictions on Access: public 2017-05-15
Host Institution: UCF

In Collections