You are here

Climate Change and the Evolution of Insect Immune Function

Download pdf | Full Screen View

Date Issued:
2017
Abstract/Description:
Insects are ectothermic organisms that have physiological, behavioral and life-history traits directly influenced by their environment. Investigations have shown that many insects use melanin to permanently darken their cuticles in cooler or drier climates to improve thermoregulation and desiccation resistance. Melanin is a major component of pathogen defense in insects. This suggests that environmentally driven adaptive changes in cuticular melanin may non-adaptively shape insect immune function. This hypothesis has been referred to as climate-related Cuticle Dependent Immune Investment (climate-related CDII). Climate-related CDII also suggests that a warming climate could lead to the evolution of a weakened melanin-based immune response due to direct selection for lighter cuticles. Climate-related CDII has not been investigated with regard to climate change. Using Drosophila melanogaster, the first part of this study investigated if the documented pattern of lowered immune function in warmer temperatures offsets the expected gain in metabolic rate. The second part of this project investigated how a warming thermal environment will affect the evolution of insect immune function by quantifying changes in melanization and immune function over multiple generations in a changing thermal environment. In the first investigation there was evidence for weakened immune function in males, while females saw an offset by gaining a metabolic boost. The second investigation showed evidence that warming treatments evolved lowered overall immune function. This project gives evidence that insect immune function has the potential to be weakened by increasing temperatures. Insect immune function is a major contributing factor to insect abundances. A decrease in beneficial insects or an increase in harmful insects or pathogens they vector could have detrimental environment and human health consequences.?
Title: Climate Change and the Evolution of Insect Immune Function.
12 views
6 downloads
Name(s): Perry, Danae, Author
Fedorka, Kenneth, Committee Chair
Jenkins, David, Committee Member
Hoffman, Eric, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2017
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Insects are ectothermic organisms that have physiological, behavioral and life-history traits directly influenced by their environment. Investigations have shown that many insects use melanin to permanently darken their cuticles in cooler or drier climates to improve thermoregulation and desiccation resistance. Melanin is a major component of pathogen defense in insects. This suggests that environmentally driven adaptive changes in cuticular melanin may non-adaptively shape insect immune function. This hypothesis has been referred to as climate-related Cuticle Dependent Immune Investment (climate-related CDII). Climate-related CDII also suggests that a warming climate could lead to the evolution of a weakened melanin-based immune response due to direct selection for lighter cuticles. Climate-related CDII has not been investigated with regard to climate change. Using Drosophila melanogaster, the first part of this study investigated if the documented pattern of lowered immune function in warmer temperatures offsets the expected gain in metabolic rate. The second part of this project investigated how a warming thermal environment will affect the evolution of insect immune function by quantifying changes in melanization and immune function over multiple generations in a changing thermal environment. In the first investigation there was evidence for weakened immune function in males, while females saw an offset by gaining a metabolic boost. The second investigation showed evidence that warming treatments evolved lowered overall immune function. This project gives evidence that insect immune function has the potential to be weakened by increasing temperatures. Insect immune function is a major contributing factor to insect abundances. A decrease in beneficial insects or an increase in harmful insects or pathogens they vector could have detrimental environment and human health consequences.?
Identifier: CFE0006638 (IID), ucf:51256 (fedora)
Note(s): 2017-05-01
M.S.
Sciences, Biology
Masters
This record was generated from author submitted information.
Subject(s): insect immunity -- temperature -- melanin -- Drosophila melanogaster
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006638
Restrictions on Access: public 2017-05-15
Host Institution: UCF

In Collections