You are here
Optimizing Laboratory Pyrolysis Methods to Compliment Real World Fire Debris
- Date Issued:
- 2017
- Abstract/Description:
- Forensic analysts are tasked with determining the presence of ignitable liquid residue in fire debris. Analysis of fire debris allows the analyst to understand how the fire occurred. However, the presence of some substrates can potentially impact the identification of ignitable liquid residue and classification of a sample as positive or negative for the presence of ignitable liquid. Pyrolysis of building materials and furnishings (substrates) lead to background interference within the resulting chromatographic profile. To combat misclassification of a sample as positive for ignitable liquid residue, knowledge of the pyrolysis products from individual substrates is of utmost importance. However, unburned reference samples from a fire scene can be difficult to obtain. The use of a database in conjunction with the analysis of the samples can lead to a more complete analysis of fire debris. Within this research, four different burn methods (modified destruction distillation method, top heat, bottom heat, and tube furnace) were utilized in burning eight different flooring substrates (polyester, nylon, and olefin carpeting, carpet padding, vinyl flooring, laminate flooring, yellow pine, and plywood) to obtain pyrolysis/combustion product profiles. Each burn method was performed at three different burn times for a total of twelve different burns of each substrate. Standard methods, ASTM E1412-12 and ASTM E1618-14, were used in the extraction and interpretation of the laboratory burn products. Principal component analysis (PCA) was used to relate the laboratory burn results to neat ignitable liquid/substrate and large scale burn data sets.Laboratory burn data projected into the PCA space displayed that the laboratory burn data is similar to the data contained within the ILRC and Substrate databases. Differences observed within laboratory burn data projections illustrated the variability of the laboratory burn methods. The composition of the substrate dictated the pyrolysis/combustion products produced. While this research only focuses on flooring substrates, an increase in the number of different types of materials in the Substrate Database can aid analysts in identifying common pyrolysis/combustion products observed in fire debris.
Title: | Optimizing Laboratory Pyrolysis Methods to Compliment Real World Fire Debris. |
47 views
17 downloads |
---|---|---|
Name(s): |
Coulson, Richard, Author Sigman, Michael, Committee Chair Bridge, Candice, Committee Member Yestrebsky, Cherie, Committee Member Campiglia, Andres, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2017 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Forensic analysts are tasked with determining the presence of ignitable liquid residue in fire debris. Analysis of fire debris allows the analyst to understand how the fire occurred. However, the presence of some substrates can potentially impact the identification of ignitable liquid residue and classification of a sample as positive or negative for the presence of ignitable liquid. Pyrolysis of building materials and furnishings (substrates) lead to background interference within the resulting chromatographic profile. To combat misclassification of a sample as positive for ignitable liquid residue, knowledge of the pyrolysis products from individual substrates is of utmost importance. However, unburned reference samples from a fire scene can be difficult to obtain. The use of a database in conjunction with the analysis of the samples can lead to a more complete analysis of fire debris. Within this research, four different burn methods (modified destruction distillation method, top heat, bottom heat, and tube furnace) were utilized in burning eight different flooring substrates (polyester, nylon, and olefin carpeting, carpet padding, vinyl flooring, laminate flooring, yellow pine, and plywood) to obtain pyrolysis/combustion product profiles. Each burn method was performed at three different burn times for a total of twelve different burns of each substrate. Standard methods, ASTM E1412-12 and ASTM E1618-14, were used in the extraction and interpretation of the laboratory burn products. Principal component analysis (PCA) was used to relate the laboratory burn results to neat ignitable liquid/substrate and large scale burn data sets.Laboratory burn data projected into the PCA space displayed that the laboratory burn data is similar to the data contained within the ILRC and Substrate databases. Differences observed within laboratory burn data projections illustrated the variability of the laboratory burn methods. The composition of the substrate dictated the pyrolysis/combustion products produced. While this research only focuses on flooring substrates, an increase in the number of different types of materials in the Substrate Database can aid analysts in identifying common pyrolysis/combustion products observed in fire debris. | |
Identifier: | CFE0006578 (IID), ucf:51357 (fedora) | |
Note(s): |
2017-05-01 M.S. Sciences, Chemistry Masters This record was generated from author submitted information. |
|
Subject(s): | forensic science -- fire debris -- ignitable liquid -- pyrolysis -- gas chromatography-mass spectrometry | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0006578 | |
Restrictions on Access: | campus 2018-05-15 | |
Host Institution: | UCF |