You are here
Analysis of Benzopyrenes and Benzopyrene Metabolites by Fluorescence Spectroscopy Techniques
- Date Issued:
- 2016
- Abstract/Description:
- Polycyclic aromatic hydrocarbons (PAHs) are some of the most common and toxic pollutants encountered worldwide. Presently, monitoring is restricted to sixteen PAHs, but it is well understood that this list omits many toxic PAHs. Among the (")forgotten(") PAHs, isomers with molecular weight 302 are of particular concern due to their high toxicological properties. The chromatographic analysis of PAHs with MW 302 is challenged by similar retention times and virtually identical mass fragmentation patterns.The first original component of this dissertation evolves from a high-resolution spectroscopic approach specifically developed to fulfil this gap. Herein, 4.2 K Laser-Excited Time-Resolved Shpol'skii Spectroscopy (4.2K LETRSS) is applied to the analysis of HMW-PAHs in a complex coal tar standard reference material (SRM 1597a). The spectral and lifetime information obtained with LETRSS provide the required selectivity for the unambiguous determination of PAH isomers in the high-performance liquid chromatography (HPLC) fractions. Complete LETRSS analysis is possible with microliters of HPLC fractions and organic solvent. The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach a unique alternative for the analysis of isomers of HMW-PAHs in complex environmental samples.The second original component of this dissertation focuses on the development of screening methodology for the routine analysis of PAH metabolites in urine samples. It explores the room-temperature fluorescence (RTF) properties of 3-hydroxy-benzo[a]pyrene, benzo[a]pyrene-trans-9,10-dihydrodiol, benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol and benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol previously extracted with octadecyl-silica membranes. RTF measurements from extraction membranes are carried out with the aid of fiber optic probe that eliminates the need for manual optimization of signal intensities. Relative standard deviations varying from 2.07% (benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol) to 8.55% (3-hydroxy-benzo[a]pyrene) were obtained with a straightforward procedure. Analytical recoveries from human urine samples varied from 87.54 (&)#177; 3.11% (3-hydroxy-benzo[a]pyrene) to 99.77 (&)#177; 2.48% (benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol). The excellent analytical figures of merit and the simplicity of the experimental procedure demonstrate the potential of Solid phase extraction-RTF for screening biomarkers of PAH exposure in numerous urine samples.
Title: | Analysis of Benzopyrenes and Benzopyrene Metabolites by Fluorescence Spectroscopy Techniques. |
42 views
30 downloads |
---|---|---|
Name(s): |
Al-Farhani, Bassam, Author Campiglia, Andres, Committee Chair Harper, James, Committee Member Zou, Shengli, Committee Member Frazer, Andrew, Committee Member Lee, Woo Hyoung, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2016 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Polycyclic aromatic hydrocarbons (PAHs) are some of the most common and toxic pollutants encountered worldwide. Presently, monitoring is restricted to sixteen PAHs, but it is well understood that this list omits many toxic PAHs. Among the (")forgotten(") PAHs, isomers with molecular weight 302 are of particular concern due to their high toxicological properties. The chromatographic analysis of PAHs with MW 302 is challenged by similar retention times and virtually identical mass fragmentation patterns.The first original component of this dissertation evolves from a high-resolution spectroscopic approach specifically developed to fulfil this gap. Herein, 4.2 K Laser-Excited Time-Resolved Shpol'skii Spectroscopy (4.2K LETRSS) is applied to the analysis of HMW-PAHs in a complex coal tar standard reference material (SRM 1597a). The spectral and lifetime information obtained with LETRSS provide the required selectivity for the unambiguous determination of PAH isomers in the high-performance liquid chromatography (HPLC) fractions. Complete LETRSS analysis is possible with microliters of HPLC fractions and organic solvent. The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach a unique alternative for the analysis of isomers of HMW-PAHs in complex environmental samples.The second original component of this dissertation focuses on the development of screening methodology for the routine analysis of PAH metabolites in urine samples. It explores the room-temperature fluorescence (RTF) properties of 3-hydroxy-benzo[a]pyrene, benzo[a]pyrene-trans-9,10-dihydrodiol, benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol and benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol previously extracted with octadecyl-silica membranes. RTF measurements from extraction membranes are carried out with the aid of fiber optic probe that eliminates the need for manual optimization of signal intensities. Relative standard deviations varying from 2.07% (benzo[a]pyrene-r-7,t-8,c-9-tetrahydrotriol) to 8.55% (3-hydroxy-benzo[a]pyrene) were obtained with a straightforward procedure. Analytical recoveries from human urine samples varied from 87.54 (&)#177; 3.11% (3-hydroxy-benzo[a]pyrene) to 99.77 (&)#177; 2.48% (benzo[a]pyrene-r-7,t-8,c-9,c-10-tetrahydrotetrol). The excellent analytical figures of merit and the simplicity of the experimental procedure demonstrate the potential of Solid phase extraction-RTF for screening biomarkers of PAH exposure in numerous urine samples. | |
Identifier: | CFE0006520 (IID), ucf:51363 (fedora) | |
Note(s): |
2016-05-01 Ph.D. Sciences, Chemistry Doctoral This record was generated from author submitted information. |
|
Subject(s): |
Laser-Excited time-resolved Shpol'skii spectroscopy benzo[a]pyrene High-molecular weight polycyclic aromatic hydrocarbons SRM 1597a Solid-phase extraction benzo[a]pyrene metabolites |
|
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0006520 | |
Restrictions on Access: | campus 2017-11-15 | |
Host Institution: | UCF |