You are here

Hybrid Integrated Photonic Platforms and Devices

Download pdf | Full Screen View

Date Issued:
2016
Abstract/Description:
Integrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical transparency and functionality which can be ultimately achieved. In this work, several new platforms and technologies have been developed to meet these needs. First, the silicon-on-lithium-niobate (SiLN) platform is discussed, on which the first compact, integrated electro-optic modulator in the mid-infrared has been demonstrated. Next, results are shown in the development of the all-silicon-optical-platform (ASOP), an ultra-stable suspended membrane approach which offers broad optical transparency from 1.2 to 8.5 um and enables efficient nonlinear frequency conversion in the mid-IR. This fabrication approach is then taken further with (")anchored-membrane waveguides,(") (T-Guides) enabling single-mode and single-polarization waveguiding over a span exceeding 1.27 octaves. Afterward, a new photonic technology enabling integrated polarization beam-splitters and polarizers over unprecedented bandwidths is introduced, called topographically anisotropic photonics (TAP). Next, results on high-performance microphotonic chalcogenide glass waveguides are presented. Finally, several integrated photonics concepts suitable for further work will be discussed, such as augmentations to T-Guides and a novel technique for quasi-phase-matching.
Title: Hybrid Integrated Photonic Platforms and Devices.
32 views
16 downloads
Name(s): Chiles, Jeffrey, Author
Fathpour, Sasan, Committee Chair
Vodopyanov, Konstantin, Committee Member
Khajavikhan, Mercedeh, Committee Member
Chanda, Debashis, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2016
Publisher: University of Central Florida
Language(s): English
Abstract/Description: Integrated photonics has the potential to revolutionize optical systems by achieving drastic reductions in their size, weight and power. Remote spectroscopy, free-space communications and high-speed telecommunications are critical applications that would benefit directly from these advancements. However, many such applications require extremely wide spectral bandwidths, leading to significant challenges in their integration. The choice of integrated platform influences the optical transparency and functionality which can be ultimately achieved. In this work, several new platforms and technologies have been developed to meet these needs. First, the silicon-on-lithium-niobate (SiLN) platform is discussed, on which the first compact, integrated electro-optic modulator in the mid-infrared has been demonstrated. Next, results are shown in the development of the all-silicon-optical-platform (ASOP), an ultra-stable suspended membrane approach which offers broad optical transparency from 1.2 to 8.5 um and enables efficient nonlinear frequency conversion in the mid-IR. This fabrication approach is then taken further with (")anchored-membrane waveguides,(") (T-Guides) enabling single-mode and single-polarization waveguiding over a span exceeding 1.27 octaves. Afterward, a new photonic technology enabling integrated polarization beam-splitters and polarizers over unprecedented bandwidths is introduced, called topographically anisotropic photonics (TAP). Next, results on high-performance microphotonic chalcogenide glass waveguides are presented. Finally, several integrated photonics concepts suitable for further work will be discussed, such as augmentations to T-Guides and a novel technique for quasi-phase-matching.
Identifier: CFE0006447 (IID), ucf:51408 (fedora)
Note(s): 2016-12-01
Ph.D.
Optics and Photonics, Optics and Photonics
Doctoral
This record was generated from author submitted information.
Subject(s): Integrated photonics -- optics -- polarization diversity -- mid-infrared
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006447
Restrictions on Access: public 2016-12-15
Host Institution: UCF

In Collections