You are here
Sensing with Specialty Optical Fibers
- Date Issued:
- 2016
- Abstract/Description:
- Fiber optic based sensing is a growing field with many applications in civil and aerospace engineering, oil and gas industries, and particularly in harsh environments where electronics are not able to function. Optical fibers can be easily integrated into structures, are immune to electromagnetic interference, can be interrogated from remote distances, and can be multiplexed for distributed measurements. Because of these properties, specialty fiber designs and devices are being explored for sensing temperature, strain, pressure, curvature, refractive index, and more. Here we show a detailed analysis of a multicore fiber (MCF) for sensing, including its design and optimization in simulation, as well as experimental operation when used as sensor. The multicore fiber sensor's performance as a function of temperature, strain, bending, and acoustic waves are all explored. The MCF sensors are shown to be able to withstand temperatures up to 1000(&)deg;C, making them suitable to be harsh environment sensors. Additionally, a simple method for increasing the sensitivity of the MCF to longitudinal force is shown to multiple the sensitivity of the MCF sensor by a factor of seven. Also, a configuration for decoupling force and temperature will be presented. Finally, a developing all-fiber device, a photonic lantern, will be shown in conjunction with the MCF in order to increase sensitivity, add directional sensitivity, and lower the cost of the sensor interrogation for bending measurements. In addition to the multicore fiber, an analysis of anti-resonant hollow core fiber (ARHCF) is also presented. The fibers' design-dependent propagation losses are explored, as well as their higher order mode content. Also, a potential application of an ARHCF for an in-fiber Raman air sensor is introduced, and the design optimization in simulation is shown.
Title: | Sensing with Specialty Optical Fibers. |
28 views
12 downloads |
---|---|---|
Name(s): |
Van Newkirk, Amy, Author Schulzgen, Axel, Committee Chair Delfyett, Peter, Committee Member Amezcua Correa, Rodrigo, Committee Member Raghavan, Seetha, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2016 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | Fiber optic based sensing is a growing field with many applications in civil and aerospace engineering, oil and gas industries, and particularly in harsh environments where electronics are not able to function. Optical fibers can be easily integrated into structures, are immune to electromagnetic interference, can be interrogated from remote distances, and can be multiplexed for distributed measurements. Because of these properties, specialty fiber designs and devices are being explored for sensing temperature, strain, pressure, curvature, refractive index, and more. Here we show a detailed analysis of a multicore fiber (MCF) for sensing, including its design and optimization in simulation, as well as experimental operation when used as sensor. The multicore fiber sensor's performance as a function of temperature, strain, bending, and acoustic waves are all explored. The MCF sensors are shown to be able to withstand temperatures up to 1000(&)deg;C, making them suitable to be harsh environment sensors. Additionally, a simple method for increasing the sensitivity of the MCF to longitudinal force is shown to multiple the sensitivity of the MCF sensor by a factor of seven. Also, a configuration for decoupling force and temperature will be presented. Finally, a developing all-fiber device, a photonic lantern, will be shown in conjunction with the MCF in order to increase sensitivity, add directional sensitivity, and lower the cost of the sensor interrogation for bending measurements. In addition to the multicore fiber, an analysis of anti-resonant hollow core fiber (ARHCF) is also presented. The fibers' design-dependent propagation losses are explored, as well as their higher order mode content. Also, a potential application of an ARHCF for an in-fiber Raman air sensor is introduced, and the design optimization in simulation is shown. | |
Identifier: | CFE0006409 (IID), ucf:51490 (fedora) | |
Note(s): |
2016-08-01 Ph.D. Optics and Photonics, Optics and Photonics Doctoral This record was generated from author submitted information. |
|
Subject(s): | optical fiber -- fiber sensing -- hollow core fiber | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0006409 | |
Restrictions on Access: | public 2016-08-15 | |
Host Institution: | UCF |