You are here

The Mechanical Response and Parametric Optimization of Ankle-Foot Devices

Download pdf | Full Screen View

Date Issued:
2016
Abstract/Description:
To improve the mobility of lower limb amputees, many modern prosthetic ankle-foot devices utilize a so called energy storing and return (ESAR) design. This allows for elastically stored energy to be returned to the gait cycle as forward propulsion. While ESAR type feet have been well accepted by the prosthetic community, the design and selection of a prosthetic device for a specific individual is often based on clinical feedback rather than engineering design. This is due to an incomplete understanding of the role of prosthetic design characteristics (e.g. stiffness, roll-over shape, etc.) have on the gait pattern of an individual. Therefore, the focus of this work has been to establish a better understanding of the design characteristics of existing prosthetic devices through mechanical testing and the development of a prototype prosthetic foot that has been numerically optimized for a specific gait pattern. The component stiffness, viscous properties, and energy return of commonly prescribed carbon fiber ESAR type feet were evaluated through compression testing with digital image correlation at select loading angles following the idealized gait from the ISO 22675 standard for fatigue testing. A representative model was developed to predict the stress within each of the tested components during loading and to optimize the design for a target loading response through parametric finite element analysis. This design optimization approach, along with rapid prototyping technologies, will allow clinicians to better identify the role the design characteristics of the foot have on an amputee's biomechanics during future gait analysis.
Title: The Mechanical Response and Parametric Optimization of Ankle-Foot Devices.
7 views
4 downloads
Name(s): Smith, Kevin, Author
Gordon, Ali, Committee Chair
Kassab, Alain, Committee Member
Bai, Yuanli, Committee Member
Pabian, Patrick, Committee Member
University of Central Florida, Degree Grantor
Type of Resource: text
Date Issued: 2016
Publisher: University of Central Florida
Language(s): English
Abstract/Description: To improve the mobility of lower limb amputees, many modern prosthetic ankle-foot devices utilize a so called energy storing and return (ESAR) design. This allows for elastically stored energy to be returned to the gait cycle as forward propulsion. While ESAR type feet have been well accepted by the prosthetic community, the design and selection of a prosthetic device for a specific individual is often based on clinical feedback rather than engineering design. This is due to an incomplete understanding of the role of prosthetic design characteristics (e.g. stiffness, roll-over shape, etc.) have on the gait pattern of an individual. Therefore, the focus of this work has been to establish a better understanding of the design characteristics of existing prosthetic devices through mechanical testing and the development of a prototype prosthetic foot that has been numerically optimized for a specific gait pattern. The component stiffness, viscous properties, and energy return of commonly prescribed carbon fiber ESAR type feet were evaluated through compression testing with digital image correlation at select loading angles following the idealized gait from the ISO 22675 standard for fatigue testing. A representative model was developed to predict the stress within each of the tested components during loading and to optimize the design for a target loading response through parametric finite element analysis. This design optimization approach, along with rapid prototyping technologies, will allow clinicians to better identify the role the design characteristics of the foot have on an amputee's biomechanics during future gait analysis.
Identifier: CFE0006397 (IID), ucf:51502 (fedora)
Note(s): 2016-08-01
M.S.M.E.
Engineering and Computer Science, Mechanical and Aerospace Engineering
Masters
This record was generated from author submitted information.
Subject(s): ISO 22675 -- digital image correlation -- energy return -- amputation -- finite element analysis -- prosthetic
Persistent Link to This Record: http://purl.flvc.org/ucf/fd/CFE0006397
Restrictions on Access: public 2016-08-15
Host Institution: UCF

In Collections