You are here
COMPRESSIVE AND CODED CHANGE DETECTION: THEORY AND APPLICATION TO STRUCTURAL HEALTH MONITORING
- Date Issued:
- 2016
- Abstract/Description:
- In traditional sparse recovery problems, the goal is to identify the support of compressible signals using a small number of measurements. In contrast, in this thesis the problem of identification of a sparse number of statistical changes in stochastic phenomena is considered when decision makers only have access to compressed measurements, i.e., each measurement is derived by a subset of features. Herein, we propose a new framework that is termed Compressed Change Detection. The main approach relies on integrating ideas from the theory of identifying codes with change point detection in sequential analysis. If the stochastic properties of certain features change, then the changes can be detected by examining the covering set of an identifying code of measurements. In particular, given a large number N of features, the goal is to detect a small set of features that undergoes a statistical change using a small number of measurements. Sufficient conditions are derived for the probability of false alarm and isolation to approach zero in the asymptotic regime where N is large.As an application of compressed change detection, the problem of detection of a sparse number of damages in a structure for Structural Health Monitoring (SHM) is considered. Since only a small number of damage scenarios can occur simultaneously, change detection is applied to responses of pairs of sensors that form an identifying code over a learned damage-sensing graph. Generalizations of the proposed framework with multiple concurrent changes and for arbitrary graph topologies are presented.
Title: | COMPRESSIVE AND CODED CHANGE DETECTION: THEORY AND APPLICATION TO STRUCTURAL HEALTH MONITORING. |
40 views
20 downloads |
---|---|---|
Name(s): |
Sarayanibafghi, Omid, Author Atia, George, Committee Chair Vosoughi, Azadeh, Committee Member Rahnavard, Nazanin, Committee Member University of Central Florida, Degree Grantor |
|
Type of Resource: | text | |
Date Issued: | 2016 | |
Publisher: | University of Central Florida | |
Language(s): | English | |
Abstract/Description: | In traditional sparse recovery problems, the goal is to identify the support of compressible signals using a small number of measurements. In contrast, in this thesis the problem of identification of a sparse number of statistical changes in stochastic phenomena is considered when decision makers only have access to compressed measurements, i.e., each measurement is derived by a subset of features. Herein, we propose a new framework that is termed Compressed Change Detection. The main approach relies on integrating ideas from the theory of identifying codes with change point detection in sequential analysis. If the stochastic properties of certain features change, then the changes can be detected by examining the covering set of an identifying code of measurements. In particular, given a large number N of features, the goal is to detect a small set of features that undergoes a statistical change using a small number of measurements. Sufficient conditions are derived for the probability of false alarm and isolation to approach zero in the asymptotic regime where N is large.As an application of compressed change detection, the problem of detection of a sparse number of damages in a structure for Structural Health Monitoring (SHM) is considered. Since only a small number of damage scenarios can occur simultaneously, change detection is applied to responses of pairs of sensors that form an identifying code over a learned damage-sensing graph. Generalizations of the proposed framework with multiple concurrent changes and for arbitrary graph topologies are presented. | |
Identifier: | CFE0006387 (IID), ucf:51507 (fedora) | |
Note(s): |
2016-08-01 M.S.E.E. Engineering and Computer Science, Electrical Engineering and Computer Engineering Masters This record was generated from author submitted information. |
|
Subject(s): | Change detection -- Identifying codes -- Sparsity -- Structural health monitoring | |
Persistent Link to This Record: | http://purl.flvc.org/ucf/fd/CFE0006387 | |
Restrictions on Access: | public 2016-08-15 | |
Host Institution: | UCF |